Economic Growth and Income Distribution: Linking Macroeconomic Models with Household Surveys at the Global Level

Maurizio Bussolo, Rafael E. De Hoyos, and Denis Medvedev

The World Bank

Presented by:
Maurizio Bussolo (The World Bank)
ABCDE Conference 2011
1. Motivation

2. Methodological Approach
 1. Demographics
 2. Shifting household surveys in the future
 3. Accounting for general equilibrium effects
 4. Building a micro counterfactual (Microsimulations)

3. Applications
 1. Global Income Distribution in 2030
 2. The Rise of China and India and the global middle class
 3. Distributional Implications of Climate Change

4. Conclusions
1. Motivation

- Study ex ante the potential changes in global income distribution (of individuals).
 - IMF WEO (Apr 2011): “Tensions from the Two-Speed Recovery”

- Need of modeling tool that can generate “reasonable” predictions of how global inequality might change under different scenarios
 - *Predictions* should not be seen as *forecasts*, but as scenarios given certain conditions, or *ceteris paribus* scenarios
2. Methodological Approach

- Use household surveys for 121 countries (90% of world population).

1. Project forward changes in demographic and educational structure (from “inertia”).

2. Project changes in occupational structure and incomes:
 - Taking account of (1) and
 - Forecasting changes in incomes and returns in each sector from estimates of productivity growth and changes in demand from a “Global CGE”.
The GIDD method:
A “Global CGE-Microsimulation System”

1. Population Projection by Age Groups (*Exogenous*)
2. Education Projection (*Semi-Exogenous*)
3. New Population Shares or Sampling Weights by Age and Education
4. CGE (*New Wages, Sectoral Reallocation*)
 - *Simulated Distribution*
Step 1: Demographic and Education Projections

Age
The changes in demographic structure are taken from WB or UN population projections

Education
Overall education attainments are assumed to be related with aging via a “pipeline” effect (Lutz and Goujon, 2001)

<table>
<thead>
<tr>
<th></th>
<th>Skilled</th>
<th>Unskilled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>Old</td>
<td>30</td>
<td>70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Skilled</th>
<th>Unskilled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>Old</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>
Step 2: Reweighting individual observations in the surveys

- Organize sampling weights into a matrix of individuals by partition cells:

\[
W = [w_{mn}]
\]

Matrix of “n” individual sampling weights over “m” characteristics

\[
P_m = \sum_{n=1}^{N} w_{m,n} = Wi_n
\]

Population in Subgroup “m”

- The demographic and educational projections generate the target (or expected) population in each sub-group \(m \):

\[
\hat{P}_m = \sum_{n=1}^{N} a_{m,n} w_{m,n} = (A\cdot W)i_n
\]

\(\forall m = 1, \ldots, M \)

- System is under-identified (mxn-1 var, m constraints). Can be solved in various ways, including

\[
\bar{a}_m = \hat{P}_m \left(\sum_{n=1}^{N} w_{m,n} \right)^{-1}
\]

\(\forall m = 1, \ldots, M \)
Step 3: General Equilibrium Effects

• There are other changes in the economy, in addition to the age/education structure.

• These are simulated through a (computable) general equilibrium model, which incorporates the population changes from Steps 1 and 2.

 – The World Bank’s global LINKAGE model
 • Production function is nested CES with five factors:
 Unskilled and skilled labor, capital, land, natural resources.
 • Demand structure modeled through an ELES, with cross-price and income elasticities.
 • Sector-specific productivity growth trends “calibrated to be consistent with historical evidence”
Distributional effects of macro policies: top-down macro-micro approach

Macro: Global CGE model

Exogenous shock (age education, productivity) or policy change:
\[\Delta X_s \rightarrow \Delta p, \Delta L, \Delta y \]

"Linkage variables"

\[\Delta p, \Delta L, \Delta y \]

Micro: Samples of households and behavioral models

\[(\Delta p, \Delta L, \Delta y) \rightarrow \{\Delta c_i, \Delta l_i, \Delta W_i\} \]
Step 4: Microsimulations

- **Microsimulation** → map aggregate results into household level specific results; two approaches:
 1. Fixed parametric distribution microsimulation (a la Adelman and Robinson, 1978)
 2. Endogenously generated distribution on the basis of a sample of households

- **GIDD uses 2; aggregate changes are matched by generating counterfactual distributions in the surveys by:**
 - Using probits to identify the most likely individuals to move sectors
 - Using sector-specific earnings equations to predict their earnings
 - Scaling resulting sector and skill gaps so that the changes in average gaps in the survey match the changes in average gaps in the CGE.
 - Making a final adjustment on overall levels of real aggregate per capita income
3. Applications

1. Global Income Inequality in 2030 (compared to 2000)
 - Predict a decline in global income inequality…
 - …driven mainly by inter-country convergence (however, some countries experience large inequality increases).
 - “Global middle class” grows from 7.6% to 16.1% of world population.

<table>
<thead>
<tr>
<th>Index</th>
<th>2000</th>
<th>2030</th>
<th>Dispersion Only</th>
<th>Convergence Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gini</td>
<td>0.672</td>
<td>0.626</td>
<td>0.673</td>
<td>0.625</td>
</tr>
<tr>
<td>Theil</td>
<td>0.905</td>
<td>0.749</td>
<td>0.904</td>
<td>0.749</td>
</tr>
<tr>
<td>Mean Log Deviation</td>
<td>0.884</td>
<td>0.764</td>
<td>0.893</td>
<td>0.759</td>
</tr>
</tbody>
</table>
3. Applications

1. Global Income Inequality in 2030 (compared to 2000)
 - Local inequality actually increases for 2/3 of the countries
3. Applications (ctd.)

2. The rising influence of China and India

![Percentage of Global Middle Class](chart)

- **China (2000):** 13%
- **India (2000):** 6%
- **Rest of the World (2000):** 87%
- **China (2030):** 38%
- **Rest of the World (2030):** 56%

Source: Authors' calculations
3. Applications (ctd.)

3. Distributional Impacts of Climate Change

- A “climate model” links carbon emissions to regional changes in temperatures.
- Use estimates in Cline (2007) to map these changes onto changes in agricultural productivity. Feed these into agricultural production functions in the CGE.

- Climate-change damage increases poverty in 2030 only moderately
- Larger losses among poor
3. Applications

Other applications:

- “Standard” multilateral trade simulations: the global poverty and income distribution effects of liberalizing agricultural trade;
- International migration scenarios;
- Mobility and middle class, forthcoming flagship of the Latin American Region;
- The poverty and distributional impacts of the 2008-9 global crisis: LAC regional study;
Conclusions

A list of really difficult things to do in economics:

- Measure global inequality
- Account for general equilibrium effects of policy changes
- Construct credible future scenarios

- This GIDD project has it all! Very easy to criticize, but:
 - If we want to address the questions addressed here, no clearly superior alternative to the GIDD is currently available;
 - GIDD, like any other economic model, is helpful to structure the discussion. We are ready to abandon any of its assumptions and working on testing the robustness of its results.