The measurement of inequality of opportunity

Vito Peragine
University of Bari, Italy

World Bank, OECD, 2011 abcde Conference,
"Broadening Opportunities for Development"
May 30-June 1, 2011 Paris

Based on joint works with R. Aaberge, P. Brunori, D. Checchi, M. Fleurbaey, M. Mogstad, F. Palmisano, L. Serlenga
The plan of the talk

- A conceptual framework
 - compensation and reward
 - ex ante and ex post

- EOp measurement in practice
 - income and opportunity inequality in 24 European Countries
 - long term opportunity inequality in Norway

- The opportunity growth incidence curve
A reduced form model of EOp

\[x_i = f(c_i, e_i, t_i) \]
\[x_i = f(c_i, e_i) \]

- \(x_i \) outcome, \(t_i \) policy, \(c_i \) circumstances, \(e_i \) responsibility

- **Compensation**: inequalities due to circumstances should be eliminated as much as possible: \(x_i \) should depend only on \(e_i \)

- **Reward**: how to be fair to individuals with identical circumstances, how to apportion outcome to effort
 - **liberal**: given \(c_i \), inequality aversion wrt transfers \(t_i \)
 - **utilitarian**: given \(c_i \), zero inequality aversion wrt outcomes \(x_i \)
The clash between compensation and reward

- x_i depends only on e_i & t_i depends only on c_i: impossible unless separability in (t, c)
The clash between compensation and reward

- x_i depends only on e_i & t_i depends only on c_i: impossible unless separability in (t, c)

- In terms of ranking: construct an artificial distribution $\{\tilde{x}\}$ that (i) reflects inequality due to e but (ii) does not reflect inequality due to c. Then measure inequality in $\{\tilde{x}\}$.

The clash between compensation and reward

- \(x_i \) depends only on \(e_i \) & \(t_i \) depends only on \(c_i \): impossible unless separability in \((t, c)\)

- In terms of ranking: construct an artificial distribution \(\{\tilde{x}\} \) that (i) reflects inequality due to \(e \) but (ii) does not reflect inequality due to \(c \). Then measure inequality in \(\{\tilde{x}\} \).

- Unless the effect of \(c \) on \(x \) is independent of \(e \), it is impossible to satisfies (i) and (ii).
x_i depends only on e_i & t_i depends only on c_i: impossible unless separability in (t, c)

In terms of ranking: construct an artificial distribution \{\tilde{x}\} that (i) reflects inequality due to e but (ii) does not reflect inequality due to c. Then measure inequality in \{\tilde{x}\}.

Unless the effect of c on x is independent of e, it is impossible to satisfy (i) and (ii).

Compromise solutions: fully consistent with one principle, generally violate the other
The compensation/reward clash is an expression of a deeper tension: ex ante vs. ex post

- **The ex post approach**: focus on outcome inequalities among individuals who exert the same effort (tranches). The effort of individuals must be identified. Ex: Roemer (1993), Fleurbaey (1995)
The compensation/reward clash is an expression of a deeper tension: ex ante vs. ex post

- **The ex post approach**: focus on outcome inequalities among individuals who exert the same effort (tranches). The effort of individuals must be identified. Ex: Roemer (1993), Fleurbaey (1995)

The compensation/reward clash is an expression of a deeper tension: ex ante vs. ex post

- **The ex post approach**: focus on outcome inequalities among individuals who exert the same effort (tranches). The effort of individuals must be identified. Ex: Roemer (1993), Fleurbaey (1995)

- Most of the empirical work on EOp is ex ante (information parsimony?). Ex: de Barros et al. (2009), World Bank (2006).
The clash between Ex ante and Ex post EOp

Fleurbaey and Peragine (2010)

- **Ex post compensation**: progressive transfer involving individuals who exert the same effort
The clash between Ex ante and Ex post EOp

Fleurbaey and Peragine (2010)

- **Ex post compensation**: progressive transfer involving individuals who exert the same effort
- **Ex ante compensation**: progressive transfer from an individual in a richer type to an individual in a poorer type
Fleurbaey and Peragine (2010)

- **Ex post compensation**: progressive transfer involving individuals who exert the same effort

- **Ex ante compensation**: progressive transfer from an individual in a richer type to an individual in a poorer type

- **Ex post and Ex ante compensation are incompatible**
The clash between Ex ante and Ex post EOp

Fleurbaey and Peragine (2010)

- **Ex post compensation**: progressive transfer involving individuals who exert the same effort

- **Ex ante compensation**: progressive transfer from an individual in a richer type to an individual in a poorer type

- **Ex post and Ex ante compensation are incompatible**

- Moreover, the tension between reward and compensation only exists if one endorses an ex post view of EOp.
Ex ante measures of IOp

- Given a population cdf $F(x)$, consider $F(x|c_i)$, the outcome distribution conditional to c_i, interpreted as the opportunity set of individuals with c_i.

- Focus on differences between $F(x|c_i)$, different c_i.

- Utilitarian: focus on type mean income μ_i (zero inequality aversion within type).

- Welfare: opportunity generalized Lorenz $GL(j) = \frac{1}{n} \sum_{i=1}^{n} q_i \mu_i$.

- Inequality: opportunity Lorenz $L(j) = \frac{1}{n} \sum_{i=1}^{n} q_i \mu_i \frac{1}{\sum_{i=1}^{n} q_i \mu_i}$.

- Inequality in the smoothed distribution ($\mu_1, ... , \mu_n$).

- Parametric versions.

V. Peragine (University of Bari) World Bank OECD, abcde Conference, Paris
Ex ante measures of IOp

- Given a population cdf $F(x)$, consider $F(x|c_i)$, the outcome distribution conditional to c_i, interpreted as the opportunity set of individuals with c_i.

- Focus on differences between $F(x|c_i)$, different c_i.
Ex ante measures of IOp

- Given a population cdf $F(x)$, consider $F(x|c_i)$, the outcome distribution conditional to c_i, interpreted as the opportunity set of individuals with c_i.

- Focus on differences between $F(x|c_i)$, different c_i.

- Utilitarian: focus on type mean income μ_i (zero inequality aversion within type)
Ex ante measures of IOp

- Given a population cdf $F(x)$, consider $F(x|c_i)$, the outcome distribution conditional to c_i, interpreted as the opportunity set of individuals with c_i.

- Focus on differences between $F(x|c_i)$, different c_i.

- Utilitarian: focus on type mean income μ_i (zero inequality aversion within type)
 - Welfare: opportunity generalized Lorenz $GL(j) = \frac{1}{n} \sum_{i=1}^{j} q_i \mu_i$, with $j = 1, ..., n$
Ex ante measures of IOp

- Given a population cdf $F(x)$, consider $F(x|c_i)$, the outcome distribution conditional to c_i, interpreted as the opportunity set of individuals with c_i.

- Focus on differences between $F(x|c_i)$, different c_i.

- Utilitarian: focus on type mean income μ_i (zero inequality aversion within type)
 - Welfare: opportunity generalized Lorenz $GL(j) = \frac{1}{n} \sum_{i=1}^{j} q_i \mu_i$, with $j = 1, \ldots, n$
 - Inequality: opportunity Lorenz $L(j) = \frac{\sum_{i=1}^{j} q_i \mu_i}{\sum_{i=1}^{n} q_i \mu_i}$, with $j = 1, \ldots, n$
Ex ante measures of IOp

- Given a population cdf $F(x)$, consider $F(x|c_i)$, the outcome distribution conditional to c_i, interpreted as the opportunity set of individuals with c_i.

- Focus on differences between $F(x|c_i)$, different c_i.

- Utilitarian: focus on type mean income μ_i (zero inequality aversion within type)
 - Welfare: opportunity generalized Lorenz $GL(j) = \frac{1}{n} \sum_{i=1}^{j} q_i \mu_i$, with $j = 1, \ldots, n$
 - Inequality: opportunity Lorenz $L(j) = \frac{\sum_{i=1}^{j} q_i \mu_i}{\sum_{i=1}^{n} q_i \mu_i}$, with $j = 1, \ldots, n$

- Inequality in the *smoothed* distribution $(\mu_1 \mathbf{1}_1, \ldots, \mu_n \mathbf{1}_n)$
Ex ante measures of IOp

Given a population cdf $F(x)$, consider $F(x | c_i)$, the outcome distribution conditional to c_i, interpreted as the opportunity set of individuals with c_i.

Focus on differences between $F(x | c_i)$, different c_i.

utilitarian: focus on type mean income μ_i (zero inequality aversion within type)

- welfare: opportunity generalized Lorenz $GL(j) = \frac{1}{n} \sum_{i=1}^{j} q_i \mu_i$, with $j = 1, \ldots, n$
- inequality: opportunity Lorenz $L(j) = \frac{\sum_{i=1}^{j} q_i \mu_i}{\sum_{i=1}^{n} q_i \mu_i}$, with $j = 1, \ldots, n$

inequality in the *smoothed* distribution $(\mu_1 1_1, \ldots, \mu_n 1_n)$

Parametric versions
Ex post measures of IOp

- $F(x|e_j)$ is the distribution of outcome conditional to effort e_j (tranche j)
Ex post measures of IOp

- $F(x|e_j)$ is the distribution of outcome conditional to effort e_j (tranche j)
- Measure inequality within tranches
Ex post measures of IOp

- $F(x|e_j)$ is the distribution of outcome conditional to effort e_j (tranche j)
- Measure inequality within tranches
- Check Lorenz and generalized Lorenz dominance for every tranche
Ex post measures of IOp

- $F(x|e_j)$ is the distribution of outcome conditional to effort e_j (tranche j)

- Measure inequality within tranches

- Check Lorenz and generalized Lorenz dominance for every tranche

- Define a class: individuals at the same position in the tranche distribution
Ex post measures of IOp

- $F(x | e_j)$ is the distribution of outcome conditional to effort e_j (tranche j)

- Measure inequality within tranches
- Check Lorenz and generalized Lorenz dominance for every tranche

- Define a class: individuals at the same position in the tranche distribution
- Focus on inequality between classes (Fleurbaey and Peragine 2011)
Equality of opportunity in Europe

Checchi, Peragine, Serlenga (2010)

- 2005 wave of the Survey on Income and Living Conditions (EU-SILC);
- 27 countries. Restrict sample to 30-60 years old. 127,460 observation

Outcome: post-tax individual income

Circumstances: family background (parental occupation and education), gender, location, nationality. 72 types

Effort: rank in the type distribution

Ex ante and ex post measures, parametric and non parametric
Inequality of opportunity account for a relevant part of income inequality in Europe (from 5% to 40%)
Difference between ex ante/ex post; Ex post more correlated with overall inequality
Income inequality and ex ante opportunity inequality. EU SILC 2005.

Three groups of countries: continental and med. European countries, formerly centrally planned economies, Nordic countries.
Main differences between short term and long term inequality:

- The existence of transitory components
- The life cycle growth of earnings

How these factors affect inequality of opportunity?

Two approaches to long term EOp

1. First evaluate income distributions of type i at each time t; then aggregate across periods, obtaining a lifetime evaluation of the opportunity set. Finally evaluate the distribution of lifetime opportunity sets. (Bourguignon et al. 2007)

Our approach: first evaluate the individual income streams, obtaining a distribution of permanent incomes (we use equally allocated equivalent income). Then measure EOp.
Main differences between short term and long term inequality:

- the existence of transitory components
Main differences between short term and long term inequality:
- the existence of transitory components
- the life cycle growth of earnings
Measuring Long Term Inequality of Opportunity

Aaberge Mogstad Peragine (2011)

- Main differences between short term and long term inequality:
 - the existence of transitory components
 - the life cycle growth of earnings

- How these factors affect inequality of opportunity?
Measuring Long Term Inequality of Opportunity

Aaberge Mogstad Peragine (2011)

- Main differences between short term and long term inequality:
 - the existence of transitory components
 - the life cycle growth of earnings
- How these factors affect inequality of opportunity?
- Two approaches to long term EOp
Measuring Long Term Inequality of Opportunity

Aaberge Mogstad Peragine (2011)

- Main differences between short term and long term inequality:
 - the existence of transitory components
 - the life cycle growth of earnings

- How these factors affect inequality of opportunity?

- Two approaches to long term EOp

- First evaluate income distributions of type i at each time t; then aggregate across periods, obtaining a lifetime evaluation of opportunity set. Finally evaluate the distribution of lifetime opportunity sets. (Bourguignon et al. 2007);
Measuring Long Term Inequality of Opportunity

Aaberge Mogstad Peragine (2011)

- Main differences between short term and long term inequality:
 - the existence of transitory components
 - the life cycle growth of earnings

- How these factors affect inequality of opportunity?

- Two approaches to long term EOp
 - First evaluate income distributions of type i at each time t; then aggregate across periods, obtaining a lifetime evaluation of opportunity set. Finally evaluate the distribution of lifetime opportunity sets. (Bourguignon et al. 2007);

- Our approach: first evaluate the individual income streams, obtaining a distribution of permanent incomes (we use equally allocated equivalent income). Then measure EOp.
The data

- A longitudinal dataset with records for every Norwegian male from 1967 to 2006;
- Focus on the 1942-1944 cohorts (entire working lifespan). Final sample: 26 090 individuals;
- Income incorporates annual wages, capital income, and all public cash transfers. Focus on individual income;
- Circumstances: birth cohort, educational attainment of the parents (compulsory sc. (1-7), middle sc. (8-10), higher ed. (11 or more)), urbanity, family size (one if the individual has two or more siblings);
- 36 types and 100 tranches.
Income and opportunity inequality based on period-specific and permanent income

Fig 2. Permanent and period inequalities
Percentile-specific inequality based on permanent income
Main empirical results

- Snapshot income inequality always higher than permanent income inequality. A different pattern for opportunity inequality.

- Snapshots of inequality based on income early in the working lifespan provide a reasonable approximation of inequality in permanent income.

- Difference between ex-ante and ex-post EOp measures. Particularly in the latest 15 years of the participation of the labour market.

- Ex post inequality of opportunity is higher at the tails of the distribution.
Opportunity Growth Incidence Curve

Brunori, Palmisano, Peragine (2011)

- Growth Incidence Curve (Ravallion and Chen 2003):

\[g(p) = \frac{y_{t+1}(p) - y_t(p)}{y_t(p)} \]

- Cumulated (NA) Opportunity GIC

\[C_{gO}(j) = \sum_{i=1}^{j} q_i gO(i) \]

Relation with welfare dominance

V. Peragine (University of Bari)
World Bank OECD, abcde Conference, Paris
Opportunity Growth Incidence Curve

Brunori, Palmisano, Peragine (2011)

- Growth Incidence Curve (Ravallion and Chen 2003):

\[g(p) = \frac{y_{t+1}(p) - y_t(p)}{y_t(p)} \]

- \(\mu_t(i) \): mean income of type \(i \) at time \(t \); types ranked:

\[\mu_t(i) \leq \mu_t(i+1), \ i = 1, \ldots, n \]
Opportunity Growth Incidence Curve

Brunori, Palmisano, Peragine (2011)

- Growth Incidence Curve (Ravallion and Chen 2003):
 \[g(p) = \frac{y_{t+1}(p) - y_t(p)}{y_t(p)} \]

- \(\mu_t(i) \): mean income of type \(i \) at time \(t \); types ranked:
 \(\mu_t(i) \leq \mu_t(i+1), \ i = 1, \ldots, n \)

- Opportunity (NA) Growth Incidence Curve
 \[g^O(i) = \frac{\mu_{t+1}(i) - \mu_t(i)}{\mu_t(i)} \]
Opportunity Growth Incidence Curve

Brunori, Palmisano, Peragine (2011)

- Growth Incidence Curve (Ravallion and Chen 2003):
 \[g (p) = \frac{y_{t+1} (p) - y_t (p)}{y_t (p)} \]
 - \(\mu_t (i) \): mean income of type \(i \) at time \(t \); types ranked: \(\mu_t (i) \leq \mu_t (i + 1) \), \(i = 1, \ldots, n \)

- Opportunity (NA) Growth Incidence Curve
 \[g^O (i) = \frac{\mu_{t+1} (i) - \mu_t (i)}{\mu_t (i)} \]

- Cumulated (NA) Opportunity GIC
 \[Cg^O (j) = \sum_{i=1}^{j} (q_i) g^O (i) , j = 1, \ldots, n \]
Opportunity Growth Incidence Curve

Brunori, Palmisano, Peragine (2011)

- Growth Incidence Curve (Ravallion and Chen 2003):
 \[g(p) = \frac{y_{t+1}(p) - y_t(p)}{y_t(p)} \]

- \(\mu_t(i) \): mean income of type \(i \) at time \(t \); types ranked:
 \(\mu_t(i) \leq \mu_t(i+1), \ i = 1, \ldots, n \)

- Opportunity (NA) Growth Incidence Curve
 \[g^O(i) = \frac{\mu_{t+1}(i) - \mu_t(i)}{\mu_t(i)} \]

- Cumulated (NA) Opportunity GIC
 \[Cg^O(j) = \sum_{i=1}^{j} (q_i) g^O(i), \ j = 1, \ldots, n \]

- Relation with welfare dominance

- *Pesquisa Nacional por Amostra de Domicílios (PNAD)*, from 2002 to 2008.
- **Income**: gross monthly per capita household income.
- **Circumstances**: region of birth (North, Northeast, Southeast, South, Center-west) and race (white/east Asians, black/mixed race, indigenous).

<table>
<thead>
<tr>
<th>rank</th>
<th>Race</th>
<th>Region of birth</th>
<th>mj</th>
<th>qj</th>
<th>sample size j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>black-mixed</td>
<td>Northeast</td>
<td>277.62</td>
<td>0.2241</td>
<td>94674</td>
</tr>
<tr>
<td>2</td>
<td>indigenous</td>
<td>Northeast</td>
<td>306.91</td>
<td>0.0007</td>
<td>313</td>
</tr>
<tr>
<td>3</td>
<td>black-mixed</td>
<td>North</td>
<td>336.00</td>
<td>0.0378</td>
<td>26548</td>
</tr>
<tr>
<td>4</td>
<td>black-mixed</td>
<td>South</td>
<td>374.07</td>
<td>0.0266</td>
<td>10313</td>
</tr>
<tr>
<td>5</td>
<td>indigenous</td>
<td>Center-west</td>
<td>402.26</td>
<td>0.0003</td>
<td>169</td>
</tr>
<tr>
<td>6</td>
<td>black-mixed</td>
<td>Southeast</td>
<td>420.35</td>
<td>0.1439</td>
<td>43109</td>
</tr>
<tr>
<td>7</td>
<td>black-mixed</td>
<td>Center-west</td>
<td>430.68</td>
<td>0.0300</td>
<td>16553</td>
</tr>
<tr>
<td>8</td>
<td>white-east asian</td>
<td>Northeast</td>
<td>505.04</td>
<td>0.1097</td>
<td>44351</td>
</tr>
<tr>
<td>9</td>
<td>indigenous</td>
<td>South</td>
<td>567.85</td>
<td>0.0002</td>
<td>120</td>
</tr>
<tr>
<td>10</td>
<td>white-east asian</td>
<td>North</td>
<td>607.81</td>
<td>0.0145</td>
<td>10203</td>
</tr>
<tr>
<td>11</td>
<td>indigenous</td>
<td>North</td>
<td>616.71</td>
<td>0.0002</td>
<td>101</td>
</tr>
<tr>
<td>12</td>
<td>indigenous</td>
<td>South</td>
<td>645.70</td>
<td>0.0004</td>
<td>120</td>
</tr>
<tr>
<td>13</td>
<td>white-east asian</td>
<td>North</td>
<td>729.28</td>
<td>0.1296</td>
<td>50246</td>
</tr>
<tr>
<td>14</td>
<td>white-east asian</td>
<td>Center-west</td>
<td>764.78</td>
<td>0.0246</td>
<td>13301</td>
</tr>
<tr>
<td>15</td>
<td>white-east asian</td>
<td>Southeast</td>
<td>903.46</td>
<td>0.2573</td>
<td>68554</td>
</tr>
</tbody>
</table>

Table 3: Types average income year 2002 in 2008 real. Source: Authors’ calculation from PNAD
Growth Incidence Curve: Brazil
Opportunity Growth Incidence Curve: Brazil

Opportunity Growth Incidence Curve
Brazil 2002-05 Vs. 2005-08

Cumulated Weighted Opportunity Growth Incidence Curve

2002-2005 2005-2008