Methanol Industry Overview
Equatorial Guinea Experience
Prospects For Offshore Methanol

John ROSCOE
Senior Technical Consultant
Marathon Oil Company
• Speaker Biography

– John Roscoe has worked for Marathon Oil Company since 1986. He has worked on onshore and offshore upstream oil and gas production projects as well as subsea production technology development. Since 2002, he has worked for Marathon’s Gas Utilization Team on gas conversion technology development / deployment.

– John Roscoe was previously employed by Davy and Capital Plant International
Abstract

The methanol industry is founded on well established technologies available from a number of experienced licensors. World methanol consumption has grown steadily during recent years, and there are prospects of enhanced use in the future. Onshore methanol production has been successfully applied as a gas monetization / flare reduction measure in Equatorial Guinea. There is growing interest in the application of offshore methanol production, with a number of FEED programs expected to commence in 2007.
Methanol Industry Overview

- Methanol is feedstock versatile – can be produced from any carbon source via reforming / gasification:
 - Natural gas
 - Hydrocarbon Liquids / Residues
 - Coal
 - Biomass
- Methanol is a versatile product – single molecule - easily aggregated - easily transportable as a liquid - multiple uses in petrochemicals sector – prospects for enhanced use
- Although flammable and toxic, methanol disperses readily, and is rapidly biodegraded in the environment
- Some downsides – conversion energy losses, bulky energy carrier, and high capital intensity, like other gas monetization options
• Methanol Industry Overview

Methane Overall Reaction

\[\text{CH}_4 + \frac{1}{2} \text{O}_2 \rightarrow \text{CH}_3\text{OH} \]

<table>
<thead>
<tr>
<th></th>
<th>Methane [Gas]</th>
<th>Methanol [Liquid]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.891 GJ / kg-mol HHV</td>
<td>0.727 GJ / kg-mol HHV</td>
</tr>
</tbody>
</table>

Theoretical Maximum Thermal Efficiency = 82 % HHV

Practical thermal efficiency limit ~ 65 % HHV because carbon conversion efficiency < 100%.

Actual reaction is multi-step

Methane from Natural Gas
Oxygen from Air or Steam

Can also think of methanol as:
44 % w hydrocarbon
56 % w water
Solutions For Flaring & Venting – Session A
The Big Scale
Methanol

• Simplified Process Schematic
 – Steam Methane Reforming [SMR]

- **Makeup Water**
- **Sulfur Removal**
- **Saturator**
- **Reforming and Heat Recovery**
 - $\text{CH}_4 + \text{H}_2\text{O} \leftrightarrow \text{CO} + 3\text{H}_2$
 - $\text{CO}_2 + \text{H}_2 \leftrightarrow \text{CO} + \text{H}_2\text{O}$
- **Water Removal**
- **Compression**
- **Synthesis Gas**
- **Methanol Synthesis**
 - $\text{CO} + 2\text{H}_2 \leftrightarrow \text{CH}_3\text{OH}$
 - $\text{CO}_2 + 3\text{H}_2 \leftrightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O}$
- **Crude Methanol**
- **Separation**
- **Purification**
- **Purge Gas To Fuel**
- **Steam**

- **Technology Licensors:**
 - LURGI / JMC-DPT / HALDOR TOPSØE / CASALE / MGC

- **World Scale Plant:**
 - 1.7 x 10^6 Tonnes / Year
 - 5,000 Tonne / Day
Solutions For Flaring & Venting – Session A
The Big Scale

Methanol

- Methanol Markets [2005]

- End Uses
 - Household Products
 - Industrial Products
 - Fuels

 - Gasoline / Fuel: 4%
 - Solvents: 4%
 - Methyl Methacrylate: 3%

 - Formaldehyde: 38%
 - Acetic Acid: 11%
 - MTBE: 20%
 - DMT: 2%
 - Others: 18%

- World Wide Capacity = 39.4 MTY
- World Wide Demand = 33.1 MTY
- Capacity Utilization = 84%
- Market Growth ~ 2 – 3% ≡ 1 World Scale Plant Every 2 Years
Methanol Future Prospects

MTA = Million Tonnes Per Annum

* Methanol Equivalent [Thermal]
** Methanol Equivalent [Carbon]

Sphere Volume \equiv MTA Approx.

LPG 490 MTA*
OLEFINS 360 MTA**
LNG 340 MTA* [Restricted]
FUEL CELLS
Blending & Substitution
Conversion [MTBE]
Conversion [MTG]
DME [Diesel Substitute]
Biodiesel [10%]

USA

LIGHT DISTILLATES 2600 MTA**
MIDDLE DISTILLATES 3000 MTA**
Solutions For Flaring & Venting – Session A
The Big Scale
Methanol

- Methanol Economic Prospects

\[
\text{Net Margin} = \text{Product Slate Value} - \text{Supply Chain Costs} - \text{Feedstock Costs} \pm \text{Incentives Burdens}
\]

Per unit of feedstock – applies to all conversion steps

- **EPC + Owner CAPEX:** ~ $450 - 500 / annual tonne methanol [West Africa 2006]
- **OPEX + Transportation:** ~ $50 - 70 / tonne – excluding natural gas feedstock
- **Alternative refinery feedstock:** ~ $50 - 60 / bbl crude oil → $167 - 200 / tonne methanol

Given high methanol prices - may as well stop conversion process at methanol

Given high natural gas prices - LNG yields better returns for large reserve bases

However – there are methanol opportunities for smaller / incremental / developing reserve bases, or higher value product slates [i.e. including olefins], or in gas rich / liquids poor regions ... and the future will depend on the crude oil / gas price ratio.
Equatorial Guinea Experience

LNG Jetty

Methanol Tank Farm

Methanol Plant

Construction Dock [Original]

Construction Dock [New]

Tanker Mooring Area

LNG Plant 3.7 x 10^6 Tonnes / Year [Under Construction]

Balance of Facilities
- Pipelines
- Liquids Recovery
- Gas Processing
- Liquids Storage
AMPCO Methanol Plant Punta Europa
- Gas Utilization / Flaring Reduction Project
- Start-up - May 2001
- Joint Ownership: SONAGAS / MARATHON / NOBLE
- Production ~ 1 x 10^6 tonnes / year
- Approx. 3% world market
- Primary markets – Europe and USA
- Three vessels under long term charter
- Cumulative avoided CO2 emissions > 10 x 10^6 Tonnes [2006]
• AMPCO – Future Plans
 – Capacity Expansions
 • Phase 1 - 2006
 – 10% increase
 – Add pre-reformer
 – Modify methanol loop / distillation section
 • Phase 2 – Under Evaluation - 2008
 – 5% increase
 – CO2 recovery from LNG plant for use as co-feedstock

• Continued National Workforce Development
 – Established Technical Training Center in Malabo
 – OJT / safety / specialized training / progressive integration
 – Successful templates for future use
• Prospects for offshore Methanol
 – Drivers
 • Avoidance of flaring / gas injection
 • Offshore = source of low priced feedstock
 • Process tolerant of CO2 in feed natural gas
 • Potential for asset reuse
 – Enablers
 • Marinization of production technology
 • Compact reforming / methanol synthesis technology
 – Offshore Considerations
 • Field life / profile / compositional variations
 • Process design versus space & weight versus gas consumption
 • Fixed or floating platform
 • Product specification / transportation / aggregation
 • HES / RAM

Reference: "Offshore Methanol Production Nearing Reality", Peter Roberts, Johnson Matthey Catalysts
Prospects For Offshore Methanol – Compact Reforming - SMR

CONVENTIONAL SMR
- Field fabricated
- Heavy / large footprint
- Motion sensitive
- Associated steam generation

COMPACT SMR
- Modular, shop fabricated
- 75% reduction in weight / footprint
- Rugged
- Elimination of steam generation
- Demonstration program in Alaska – ongoing since 2003
Prospects For Offshore Methanol

- Compact Reforming – Oxygen blown

- High process efficiency
- Less compact
- Elimination of steam generation
- Low water consumption
- Commercial demonstration unit 230 tonne / day – in operation since 1998

Offshore ASU
- Technically viable
- Risk mitigation required
- Other key issues = certification, insurance, and financing
Prospects For Offshore Methanol
- Methanol Synthesis

- Tube/Gas Cooled Reactor
 - Commercially proven
 - Cheaper loop with heat transfer and reaction combined
 - Simple internals are non pressure bearing
 - Near isothermal catalyst temperature profile => low catalyst volume
 - Single reactor for 2,500 T/D
 - Easy catalyst loading and discharge
 - Easy control by inlet temperature
 - DPT new loop concept intensification
Prospects For Offshore Methanol – Australia

- **Methanol Australia**
 - Location = Tassie Shoal
 - Fixed platform
 - Capacity 5,000 tonne / day
 - CO2 co-feedstock from adjacent LNG project
 - Reserve definition ongoing
 - Total investment ~ $ 1.0 billion
 - FEED expected to commence 2007

- **Coogee Resources**
 - Location = Timor Sea
 - FPSO
 - Capacity 4,000 tonne / day
 - Coogee Resources is operator of GHR / ATR
 - Total investment ~ $ 0.9 billion
 - FEED expected to commence 2007
• Methanol - Summary
 – Established technology / experienced licensors
 – Versatile - feedstocks / product / derivatives
 – Prospects for enhanced product utilization
 – Successful technology deployment for gas monetization / flaring reduction onshore Equatorial Guinea
 – Offshore methanol production in view – with an initial focus on gas monetization

THANK YOU FOR YOUR KIND ATTENTION