Trading Tasks:
The International Organization of Production

Esteban Rossi-Hansberg
Princeton University

with:
Pol Antras, Luis Garicano and Gene Grossman
Introduction

- Revolutionary progress in communication and information technologies has enabled an historic (and ongoing) break-up of the production process.

- Increasingly countries participate in global supply chains.
 - Many tasks required to manufacture complex industrial goods or knowledge-intensive services are performed in several, disparate locations.
 - Need new models to study international trade: frameworks that underscore trade in tasks or “Offshoring”
Examples of Task Trade

- Offshoring of tasks in manufacturing:
 - Global process for producing a Barbie doll (Tempest, 1996)
 - Texas Instruments' high-speed telecommunications chip (Burrows, 1995)
 - 37 percent of the production value of an “American” car is generated in the United States (WTO, 1998)

- Offshoring of service tasks:
 - India’s customer service call centers (Friedman, 2004)
 - X-rays readings (Pollak, 2003)
 - Software development (Thurm, 2004)
 - Tax form preparation (Robertson, et al., 2005)
 - Heart surgery for American patients (Baker 2006)

- Blinder (2006): Refers to it as the “Third Industrial Revolution”
Evidence of Increased Task Trade

- Hard evidence on the extent of task trade is difficult to come by
 - May occur between affiliates of a multinational firm or as arms-length transactions between unaffiliated firms
 - Reporting requirements for these alternatives forms of trade differ
 - Incentive to manipulate transfer prices in case of trade between affiliates
- May not involve movement of physical goods across international boundaries
 - Performance of business functions that do not result in any good passing through a customs house
- Trading tasks inherently concerns the disintegration of the production process and the adding of value at disparate locations
 - But, unlike recording for domestic transactions as value added in national income accounting, trade data are collected as gross flows
Figure 1: Imported Inputs
Source: OECD Input-Output Matrices

- Share of Imported Inputs in Total Inputs in Goods Producing Sectors, US
- Share of Imported Inputs in Gross Output in Goods Producing Sectors, US
Figure 2: Related Party Trade as a Share of U.S. Imports

Source: BEA

CHINA KOREA MEXICO TAIWAN

Trading Tasks: The International Organization of Production
Figure 3: Total Imports of Business, Professional, and Technical Services

Source: BEA

[Diagram showing total imports from 1997 to 2004, categorized as unaffiliated and affiliated.]
Labor Market Evidence

- If task trade has been on the rise due to ongoing improvements in firms' ability to separate functions in time and space,
 - We should see workers performing
 - fewer of the tasks that can be performed at a distance at relatively little cost
 - and more of those for which proximity is more valuable
 - Autor, Levy and Murnane (2003) have paired data on job task requirements with samples of employed workers
 - We aggregate their task categories into two:
 - “Routine” and “nonroutine” tasks
Figure 4: Trends in Nonroutine and Routine Tasks
Source: Autor, Levy and Murnane (2003)
Task Trade: Two Approaches

- First: Heterogeneous skills and two tasks
 - Useful to study effects on the distribution of wages
 - “Offshoring in a Knowledge Economy” (*QJE*, 2006)
 - Useful to study the formation of international production teams
 - Agents specialize in the production of routine tasks (workers) or non-routine tasks (managers)
 - Emphasizes skill complementarities
 - Globalization allows economies to take advantage of these complementarities across countries
 - “Organizing Offshoring”
 - Same but study the ‘extensive margin of offshoring’
 - What determines offshoring flows to a developing country?
Two Approaches

- Second: Continuum of tasks few skill levels
 - Useful to study GE effects on wages of reduction in the cost of trading tasks
 - “Trade in Tasks: A Simple Theory of Offshoring”
 - Decompose the impact on wages of any improvements in the technology for offshoring into three components:
 - labor-supply effect and relative-price effect
 - productivity effect
 - Offshoring as factor-biased technological change
 - Developing countries that are targets of offshoring do not experience productivity effect
First Approach

- Role of organization is to manage the communication and acquisition of knowledge in a world with heterogeneous skills
- Wages are allocative: Allocate workers to teams and organizations
- Complementarity of skills in production:
 - Good workers allow managers to increase their spans of control
 - Good managers increase the productivity of workers
- In equilibrium:
 - Positive sorting, segregation of occupations by skill
 - Wages and rents are convex: Having more units of skill increases the wage/rent received per unit of skill
- Use framework to study the impact of the formation of international teams
 - Essentially study equilibrium with world distribution of skills
An Equilibrium
Implications of First Approach

- Globalization implies, in developing countries (the one with less skilled agents):
 - More production jobs
 - Firm exit
 - A more compressed size distribution of firms
 - An increases in within-worker wage inequality
 - An increases in the skill premium

- Effects on levels of wages depend on communication costs and the distribution of skills, but
 - Some workers receive lower wages
 - If country is very scarce in skilled agents and communication technology is good, lowest skilled workers gain

- Consumption and welfare go up in both countries
Extensive Margin of Offshoring

- What makes a country a good target of offshoring
 - Intermediate skills help: Secondary or tertiary education
 - Intermediate skilled agents can become local managers for multinational firms
 - In their absence organization requires more international communication which is costly
 - However, intermediate skills lead to more offshoring only if local communication technology is not very good
 - Good local communication technology creates more efficient local teams, not more efficient multinationals
Table 1: Median Regression Results

<table>
<thead>
<tr>
<th></th>
<th>(E D I_{G D P})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.06*</td>
<td>36.74**</td>
<td>36.74***</td>
<td>36.74***</td>
<td>-3.35</td>
</tr>
<tr>
<td></td>
<td>(.64)</td>
<td>(12.87)</td>
<td>(8.72)</td>
<td>(8.45)</td>
<td>(12.43)</td>
</tr>
<tr>
<td>SSE</td>
<td>.036*</td>
<td>-.363**</td>
<td>-.363***</td>
<td>-.352***</td>
<td>-.379***</td>
</tr>
<tr>
<td></td>
<td>(.011)</td>
<td>(.143)</td>
<td>(.0971)</td>
<td>(.097)</td>
<td>(.085)</td>
</tr>
<tr>
<td>SSE (\times) BCI</td>
<td>.398*</td>
<td>.390*</td>
<td>.413***</td>
<td>.413***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.098)</td>
<td>(.097)</td>
<td>(.086)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCI</td>
<td>-35.68**</td>
<td>-35.11***</td>
<td>4.01</td>
<td>-19.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.75)</td>
<td>(8.76)</td>
<td>(12.26)</td>
<td>(10.96)</td>
<td></td>
</tr>
<tr>
<td>PSE (\times) BCI</td>
<td>-.043</td>
<td>-.183*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.126)</td>
<td>(.108)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSE</td>
<td>.087</td>
<td>.203</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.123)</td>
<td>(.105)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{G D P}{P o p})</td>
<td>-.095</td>
<td>-.206</td>
<td>-.177</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.371)</td>
<td>(.329)</td>
<td>(.313)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Countries:
- \(B C I = 1 \)
- \(B C I = 0 \)
- All

of Obs.
- 93
- 29
- 122
- 122
- All
- 122
- 122
- All
Approach 2: Trade in Tasks

- In contrast with standard trade theory, the production process involves sets of tasks
 - Some tasks are performed by low-skilled labor (L-tasks)
 - Others are performed by high-skilled workers (H-tasks)
 - There may be still other tasks that are performed by other factors of production
 - e.g., capital, or additional categories of labor
 - Allow for the possibility of substitution between factors by assuming that the set of tasks performed can be operated at different intensities
Modeling Trade in Tasks

- Firms in each industry undertake a set of L-tasks and a set of H-tasks to produce their output.
 - If an industry is intensive in low-skilled labor, the ratio of low-skilled to high-skilled employment exceeds the similar ratio in the other industry.
- For the time being, assume that it is only possible to offshore tasks performed by low-skilled labor.
 - All other tasks must be performed in close proximity to a firm's headquarters.
Task Trade Costs

- In both industries the various L-tasks differ in their suitability for offshoring.
- We assign a number between 0 and 1 to each of the L-tasks.
 - Choose them so that tasks with lower indexes can more readily be performed offshore than those with higher indexes.
 - Suppose task i would require some amount of domestic low-skilled labor if performed close to a firm's headquarters.
 - The same task would require $\beta t(i)$ units of foreign labor per unit of local labor if performed abroad.
- β reflects the overall ease of offshoring at a point in time.
 - We can represent improvements in transport and communication technology as reductions in β.
Which Tasks Will a Firm Send Offshore?

- The benefit of offshoring derives from the lower wages abroad
- The cost derives from instructing and monitoring workers at a distance or from impersonal delivery of services
- Firms offshore those tasks for which the benefits exceed the costs
- Let w and w^* be the domestic and foreign low-skilled wage rates
- Then a firm will choose to
 - offshore those L-tasks (with low indexes i) for which $\beta t(i) w^* < w$
 - and to keep in close proximity those tasks (with high indexes i) for which $\beta t(i) w^* > w$
- We denote by I the index of the marginal task, or the fraction of L-tasks performed offshore, so
 $$\beta t(I) w^* = w$$
Unit Cost

- Denote by c the cost of producing one unit of some good, which is given by
 \[c = w a_L(1 - I) + w^* a_L \beta T(I) + s a_H + \ldots \]

- Cost comprises
 - the amount paid to domestic low-skilled labor for L-tasks performed at home: $w a_L(1 - I)$
 - the amount paid to foreign low-skilled labor for L-tasks performed abroad: $w^* a_L \beta T(I)$
 - the amount paid to high-skilled labor for performing H-tasks: $s a_H$
 - and the amount paid to any other factors that may be used in production
Offshoring as Technological Progress

- Substituting $\beta t(I) w^* = w$ into the unit cost equation we obtain that unit costs are given by
 $$c = w \Omega a_L + s a_H + \ldots$$
 where $\Omega < 1$ since the least-cost tasks are offshored first
- Similar to the costs of a firm that has no opportunity to offshore but that employs low-skilled workers with productivity $1 / \Omega$
- When offshoring becomes less costly (lower β), so that $1 / \Omega$ increases, this generates a cost savings for a firm that conducts some L-tasks abroad
- In this sense, reductions in the costs of offshoring are economically equivalent to labor-augmenting technological progress!
Implications for Low-Skilled Wages

- The percentage change in the domestic wage of low-skilled labor resulting from a decline in β can be written as

$$\hat{w} = -\hat{Q} - \alpha_1 \hat{p} - \alpha_2 \frac{dI}{1 - I}$$

- where \hat{p} is the terms-of-trade of the offshoring country
- and dI is the change in the fraction of tasks offshored

- Three main effects on low-skilled wages:
 - Productivity effect
 - Relative-Price effect
 - Labor-Supply effect
Productivity Effect

- All else equal, as a decline in the cost of offshoring
 - Reduces cost of inframarginal tasks
 - Costs fall in proportion to low-skilled labor usage
 - The fall in Ω tends to boost demand for low-skilled labor and thus push up their wages

- We can show that the productivity effect is larger the more tasks are offshored (the larger I)

- But note, no productivity effect for the target country
 - Developing countries, usually the targets not the source of offshoring, do not obtain this benefit
Relative-Price and Labor-Supply Effects

- Relative-price effect:
 - Change in offshoring costs will alter the terms-of-trade
 - Negative for workers if tasks traded are L-tasks
 - Positive for workers if tasks traded are H-tasks
 - Same effect on wages of both countries

- Labor-supply effect:
 - The expanded offshoring of L-tasks \(dl > 0 \) frees up the domestic labor that otherwise would perform these tasks
 - Increases use of foreign labor
 - Effects analogous to an increase/decrease in the supply of this factor
 - Positive for developing and negative for developed countries
Policy Conclusions

- Task trade has the potential to benefit developing countries
 - But it will also imply more wage inequality and firm destruction
 - Need to alleviate these effects or opposition will increase
 - Latin America is a good example
 - Training of middle managers seems important
 - Telecommunications reforms seem key as well

- Labor supply effects may dominate relative price effects and benefit workers
 - Liberalize trade and facilitate offshoring
 - Globalization implies that reductions in offshoring costs will tend to equalize wages across countries
 - Reducing these costs should be a key policy objective
 - E.g.: Education, Telecommunications, Contracts