Virtual Hydropower Prospecting – a Foundation For Water Energy Resource Planning and Development

Douglas G. Hall, Program Manager
INL Hydropower Program
February 2009
Topics

• Water energy resource assessment of U.S. natural streams
 – Basic natural stream resource assessment
 – Feasibility assessment
 – Virtual Hydropower Prospector – a GIS application

• Water Energy Resource Assessment of Brazil Project
 – Background
 – Technical Approach
 – Project Status
 – Project End State
Water Energy Resource Assessment Of U.S. Natural Streams
Water energy resource assessment of U.S. natural streams

- **Funded by the U.S. Department of Energy Hydropower Program**
 - Idaho National Laboratory – lead
 - U.S. Geological Survey – Earth Resources Observation Systems Data Center
 - U.S. Geological Survey – Water Science Center

- **Basic resource assessment** – published April 2004*

- **Feasibility assessment** – published January 2006*

- **Virtual Hydropower Prospector* GIS application** – launched on the Internet July 2005

* Accessible at: http://hydropower.inl.gov
Elements of a resource assessment

• **Basic natural stream resource assessment**
 – Resource spatial distribution
 – Resource gross power potential

• **Feasibility assessment**
 – Feasible potential projects
 – Project realistic power potential

• **Virtual Hydropower Prospector – a GIS application**
 – Water energy resource site & feasible project locator
 – Preliminary feasibility assessment tool
Basic Natural Stream Resource Assessment
Basic assessment methodology

• **Stream reach power potential (USGS data processing)**
 – Derive synthetic hydrography using digital elevation models
 • 3D hydrography divided into stream reaches (avg. 2 mi)
 • Stream reach catchments ⇒ drainage areas
 – Obtain reach hydraulic head from 3D hydrography
 – Obtain reach flow rate from hydrologic region specific flow rate regression equation(s)
 – Estimate reach gross annual mean power by combining hydraulic head and flow rate

• **Zones where development unlikely identified using GIS**
 – Federal exclusion zones
 – Environmental exclusion zones

• **Developed reaches identified by matching plants and reaches using GIS**
Basic natural stream resource assessment results for the United States

- Reach population having power potential ≥ 10 kWa is:

 500,000 reaches
 Gross power: 300,000 MWa
Resource power potential by state and power category
Feasibility Assessment
Feasibility criteria

• Development not improbable
 – Not in federal exclusion zone
 – Not in environmental exclusion zone

• Site accessibility – within 1 mile of a road

• Load proximity
 – Within 1 mile of either
 • Power line
 • Substation
 • Power plant

 OR
 Within the 90th percentile of distances of hydro plants in the same power class to a city or populated area boundary in the hydrologic region
Project development criteria

- Working stream flow – the lesser of:
 - Half the reach flow rate
 - Sufficient flow rate to produce 30 MW

- Penstock
 - Maximum length equal to the maximum length for a majority of low power or small hydro plants in the region, respectively
 - Actual length chosen to be minimum length providing 90% of hydraulic head provided by maximum penstock length
 - Positioned on reach to maximize hydraulic head for given length
U.S. potential projects by power & technology classes

- Feasible projects having hydropower potential ≥ 10 kW

130,000 projects

Hydropower potential: 30,000 MWa

Feasible Projects
127,758

- Microhydro
 93,821
 73%

- Small Hydro
 5,420
 4%

- Low Power Conventional Turbines
 22,485
 18%

- Low Power Unconventional Systems
 6,032
 5%

- Low Power Unconventional Systems
 1,640 MWa
 6%

- Microhydro
 3,052 MWa
 10%

Feasible Project Hydropower Potential
29,438 MWa

Small Hydro
18,450 MWa
63%
Feasible hydropower potential by state and power category
Concentrations of small hydro & low power potential projects in the conterminous U.S.
Virtual Hydropower Prospector
Virtual Hydropower Prospector

- Web-based GIS tool
- Served from the Idaho National Laboratory
- Constructed using ESRI ArcIMS 9.0 and Visual Studio’s InterDev
- No special software or licenses required to use
- Displays water energy resource sites and feasible project sites in the 20 U.S. hydrologic regions
- Displays context features needed to perform preliminary feasibility assessments
- Provides tools for locating and selecting features of interest
- Goes beyond geographic location and provides attribute information about selected features
VHP Desktop

- Thumbnail Map
- Legend
- Information Window
- Toolbar
- Map View
Features displayed

• Water energy features
 – Water energy resource sites (500,000 sites)
 – Feasible potential projects (130,000 sites)

• Hydrography (5 feature sets)

• Power system
 – Hydro plants
 – Other plants
 – Power lines
 – Substations

• Transportation
 – Roads
 – Railroads

• Areas and places
 – Cities
 – Populated areas
 – County boundaries
 – State boundaries
 – Hydrologic region boundaries

• Land Use
 – Excluded areas
 • Federally designated
 • Environmentally sensitive
 – Bureau of Indian Affairs (BIA)
 – Bureau of Land Management (BLM)
 – Bureau of Reclamation (BOR)
 – Department of Defense (DOD)
 – U.S. Forest Service (FS)
 – U.S. Fish & Wildlife Service (FWS)
 – U.S. National Park Service (NP)
Water Energy Resource Assessment of Brazil Project
Background

• **Funded under the International Power Partnerships Program**
 – U.S. Department of Energy
 – Edison Electric Institute

• **IPP Program objectives**
 – Fund projects that will reduce greenhouse gas emissions
 – Foster partnerships between U.S. and foreign industries

• **Contributing organizations**
 – Idaho National Laboratory
 – U.S. Geological Survey – Earth Resources Observation Systems Data Center
 – U.S. Geological Survey – Water Science Center
 – HydroPartners, LLC
 • Ecology Brasil
Background (Continued)

• Brazil performed “river inventories” during the 1960’s (based on topo maps and field reconnaissance) custodian: Electrobras

• Brazil performed stream flow modeling studies covering the country’s 76 sub-basins custodian: Brazilian National Water Agency (ANA)
Basic resource assessment

• Hydrography
 – Digital elevation models (DEMs)
 • Shuttle Radar Topography Mission (SRTM) 90m resolution – USGS available
 – Mapped hydrography – Brazil

• Stream flow rate prediction
 – Brazilian produced stream flow modeling – used for 30% of the country
 – Stream flow modeling for 70% of country produced by USGS Water Science Center
 • Data from approximately 1850 stream gages
Basic resource assessment (Continued)

• Status
 – Synthetic hydrography produced for all of Brazil
 – Stream flow models available for 70% of land area of Brazil
 – By end of February 2009
 • Hydropower parameters available for 70% of land area of Brazil
 – Reach gross hydraulic head
 – Reach estimated average flow rate
 – Reach estimated gross power potential
 • Stream reaches compared to mapped hydrography
 • Stream reaches flagged relative to exclusion zones
Virtual Hydropower Prospector do Brasil

- **Water energy features**
 - Water energy resource sites (all stream reaches)
 - Feasible potential projects

- **Water features (12 feature sets)**

- **Power system**
 - Hydro plants
 - Other plants
 - Power lines
 - Substations

- **Transportation**
 - Roads
 - Railroads

- **Areas and places**
 - State boundaries
 - Municipality boundaries
 - Capitals
 - Villages
 - Settlements

- **Land Use**
 - Excluded areas
 - Conservation areas
 - Aboriginal lands
 - PROBIO lands
Virtual Hydropower Prospector do Brasil (Continued)

• Status
 – Initial version available for stakeholder review
 • All context data layers active
 • All map navigation active
 • All information tools active
Virtual Hydropower Prospector do Brasil (Continued)
Project end state

- Assessment report (in English)
 - Will address the national hydropower potential
 - Appendix will provide state summaries

- Virtual Hydropower Prospector do Brasil (in English)
 - Will display results of resource assessment
 - Will provide relation to context features for customized preliminary site evaluation

- Assessment data may be incorporated into similar GIS application hosted in Brazil (in Portuguese)

- Project completion scheduled for Fall 2009
Conclusions

• **Tools and techniques enabling Virtual Hydropower Prospecting have been developed**

• **Virtual Hydropower Prospecting has successfully been applied for the United States**

• **The Virtual Hydropower Prospector provides a tool to ensure optimally beneficial new hydropower development**

• **Brazil’s natural stream water energy resources are being assessed to facilitate energy planning and development**

• **The techniques employed and tools developed for the U.S. and Brazil can be applicable anywhere in the world.**
Contact

Douglas G. Hall, Program Manager
INL Water Energy Program
Idaho National Laboratory
2525 Fremont Ave.
Idaho Falls, ID 83415-3830
Telephone: 208-526-9525
Email: douglas.hall@inl.gov