Empowering Rural India: Expanding Electricity Access by Mobilizing Local Resources

Analysis of Models for Improving Rural Electricity Services in India through Distributed Generation and Supply of Renewable Energy

Mumbai - February 15, 2011
Rural Electricity Access – A Critical Development Challenge

- 56% of rural households and 400 million people without electricity access
- Rural areas face major challenges of low per capita consumption and inadequate power supply: *6-8 hours of supply and poor quality of service*
- Several initiatives to improve access and quality of electricity in rural areas
 - Electricity Act 2003: Government obligated to supply electricity to rural areas. Distributed generation through stand-alone energy systems specified as a mode for rural electrification in addition to grid extension
 - Rajiv Gandhi Grameen Vidyutikaran Yojana (RGGVY) - Envisioned electrifying all villages, providing access to all rural households and free connections to all to below-poverty-line (BPL) families
 - Decentralized Distributed Generation (DDG) Program: Capital & operating incentives to off-grid distribution generation projects in villages without grid connections
 - National Electricity Policy: Decentralized distributed generation facilities with local distribution network wherever grid based electrification is not feasible

Existing options to increase electricity access focus either on enhancing centralized generation or improving efficiency in the distribution business
The Approach

- Detailed analysis of various possible options to enhance access in 2 sites each in Haryana and Maharashtra

- Electricity Demand Assessment and Coping Cost Survey undertaken in selected states (Maharashtra - Radhanagari Taluk of Kolhapur district)

- Economic and Financial Analysis to assess commercial viability of Distributed Generation and Supply (DG&S)

- Interaction with Key Stakeholders: Government, Private Developers/franchisees, Power Utilities, Renewable Energy Development Agencies, Financial Institutions, State Regulators and Industry Associations
Combining Generation & Distribution: Potential to be an Important Part of the Solution

DG&S Combines generation and distribution, i.e., in addition to distributing power and collecting revenues, the franchisee also generates power locally and supplies to the franchised area.
Distributed Generation and Supply (DG&S) is Economically Viable & Encourages Inclusive Growth

- Current coping cost higher than economic cost of DG&S based on renewable energy
 - Average rural household spends almost Rs 11/kWh to meet its lighting needs, significantly higher than about Rs 4.6/kWh for small hydro, Rs 5.7/kWh for biomass, and Rs 6.1/kWh for wind.
 - Economic cost of Diesel-based generation system is higher than most expensive renewable source for commercial and industrial consumers.

- Facilitates Rural Development and Inclusive Growth
 - Significant impact on socio-economic status of rural population due to improved power supply.
 - Encourage local entrepreneurship and innovation in rural areas.
 - Enhance income generation and job creation by providing new opportunities for commercial/industrial activities.
DG&S: Win-Win For All

Example: Raddhanagari subdivision in Maharashtra

<table>
<thead>
<tr>
<th></th>
<th>Utility supply</th>
<th>Short- Term PPC</th>
<th>DG&S (Biomass)</th>
<th>DG&S (small hydro)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Distribution loss</td>
<td>%</td>
<td>36.81%</td>
<td>36.81%</td>
</tr>
<tr>
<td>2</td>
<td>Per unit Power Purchase Cost (including transmission charge)</td>
<td>Rs/kWh</td>
<td>2.82</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Power purchase cost (with loss)</td>
<td>Rs/kWh</td>
<td>4.46</td>
<td>11.08</td>
</tr>
<tr>
<td>4</td>
<td>Distribution cost</td>
<td>Rs/kWh</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>5</td>
<td>Return</td>
<td>Rs/kWh</td>
<td>Included in PPC & distribution costs</td>
<td>0.55</td>
</tr>
<tr>
<td>6</td>
<td>Franchisee fee @3% average revenue</td>
<td>Rs/kWh</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>7</td>
<td>Average cost of supply (3+4+5)</td>
<td>Rs/kWh</td>
<td>4.94</td>
<td>11.56</td>
</tr>
<tr>
<td>8</td>
<td>Average tariff</td>
<td>Rs/kWh</td>
<td>4.21</td>
<td>4.21</td>
</tr>
<tr>
<td>9</td>
<td>Collection efficiency</td>
<td>%</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>10</td>
<td>Average revenue collected (8X9)</td>
<td>Rs/kWh</td>
<td>3.83</td>
<td>3.83</td>
</tr>
<tr>
<td>11</td>
<td>Tariff or full cost recovery (7 X9)</td>
<td>Rs/kWh</td>
<td>5.2</td>
<td>12.17</td>
</tr>
<tr>
<td>12</td>
<td>Gap (11-10)</td>
<td>Rs/kWh</td>
<td>1.37</td>
<td>8.33</td>
</tr>
<tr>
<td>13</td>
<td>Gap met by utility</td>
<td>Rs/kWh</td>
<td>1.37</td>
<td>1.37</td>
</tr>
<tr>
<td>14</td>
<td>Viability Gap (12-13)</td>
<td>Rs/kWh</td>
<td>0.57</td>
<td>Nil</td>
</tr>
</tbody>
</table>

- May help meet RPO target or generate cash with trading of Renewable Energy Certificates
- Extension of RGGVY capital subsidy to this model could also reduce Viability gap
Huge potential for economic savings for Maharashtra using DG&S

- Total unexploited potential:
 - Wind: 2828 MW
 - Biomass: 551 MW
 - 9400 MU

- Economic gain if this power replaces kerosene and other current expensive sources

Savings in Coping Costs = Rs 4700 Crore
Implementing the model with adjustments to current schemes would bring economic benefit

- Capital subsidies under RGGVY to (i) strengthen distribution and (ii) promote DDG (Decentralised Distributed Generation) to be extended to localized Generation and Supply

- Second option is to have Viability Gap Funding in the form of Operating Subsidies that is competitively determined can bridge the financial viability gap.

- Significant unmet demand in rural areas
 - At National level, with average retail domestic tariff of Rs 3-4/kWh, utility loses Rs 6-9/kWh if it uses Short Term power to increase supply to rural areas
 - With DG&S operator, the gap is likely to be maximum Rs 4/kWh with most expensive RE resource
Specific Actions required to operationalise DG&S model in Maharashtra

Mahadiscom/Govt. of Maharashtra

- Select DG&S operator through competitive framework
- Provide access to distribution network and substations
- Monitors DG&S operator to ensure regulatory compliance
- Create Viability Gap fund to provide operating subsidies for bridging gap between cost of supply and tariffs if any
- Pursue extension of capital subsidies under RGGVY and DDG scheme to DG&S model

Maharashtra Electricity Regulatory Commission

- Ensure appropriate technical standards to synchronize DG plants along with standard interconnection process
- Guarantee “take-or-pay“ for surplus after meeting service obligations
- Promote transparent and competitive framework for cost-effective solutions at the embedded network level

Maharashtra Energy Development Agency

- Select site for DG&S operator based on resource availability
- Streamline approval process of setting up of DG plants in selected site
International Experience in Combining Generation & Distribution Successful in Increasing Rural Access in Large Countries

- **China**
 - Extended electricity grid and exploited hydropower & solar to achieve electrification rate of 99% in rural areas (2009) compared to 50.6% (1975)
 - In about 800 of 1467 counties, almost 80% supply is met through small distributed renewable projects

- **Philippines**
 - Off-grid electrification with private-sector participation covers areas that distribution utilities waive off as financially unviable for the utility to serve
 - Small-scale energy generation with various attendant services offered to community entrepreneurs. The project also recovers US$0.26/kWh from the subsidy fund as the difference between the full cost recovery rate and the existing tariff
Thank You