Strategic Climate Policy with Offsets and Incomplete Abatement: Carbon Taxes Versus Cap-and-Trade*

By
Jon Strand
Development Research Group, Environment and Energy Team
The World Bank
Washington DC 20433, USA
Jstrand1@worldbank.org

and

Department of Economics, University of Oslo

April 2011

Abstract:

This paper provides a first analysis of optimal offset policies by a “policy bloc” of fossil fuel importers implementing a climate policy, facing a (non-policy) fringe of other importers, and a bloc of fuel exporters. The policy bloc uses either a carbon tax or a cap-and-trade scheme (c-a-t), jointly with a fully efficient offset mechanism for reducing emissions in the fringe. The policy bloc is then shown to prefer a tax over c-a-t, since 1) a tax extracts more rent as fuel exporters reduce the export price, and more so when the policy bloc is larger relative to the fringe; and 2) offsets are more favorable to the policy bloc under a tax than under c-a-t. The optimal offset price under a carbon tax is half the tax rate; under c-a-t the quota and offset price are equal. The domestic carbon and offset price are both higher under a tax than under c-a-t when the policy bloc is small; when it is larger the offset price can be higher under c-a-t. Fringe countries gain by mitigation in the policy bloc, and more under a carbon tax since the fuel import price is lower, and since the price obtained when selling offsets is often higher (always so for a large fringe).

JEL Classification: Q31; Q38; Q54; Q58; H23

Key words: Climate policy; carbon taxes, cap-and-trade schemes; carbon emissions; strategic trade policy.

*The views expressed in this paper are those of the author only and cannot be taken to represent those of the World Bank, its management, or its member countries.
1. Introduction

Today only countries under Annex B of the Kyoto Protocol, who have ratified the Protocol, have policies which include formal climate policy targets. These countries might, soon or later, be joined by other high-income countries (including the U.S.) and later perhaps by major emerging economies, in establishing formal climate policies. What seems out of the question, for the foreseeable future, is that a set of comprehensive climate policies will be enacted for all greenhouse gas emitters.

Countries with comprehensive climate policy policies comprise no more than 25 percent of global carbon emissions today, and their policy takes the form of a binding cap on emissions valid for the period 2008-2012. This cap includes an “offset” scheme, the so-called Clean Development Mechanism (CDM), whereby abatement of carbon emissions, to comply with the overall cap, can be purchased from countries that do not have a climate policy. An objective of the CDM is to make it easier (and less costly) for emitters in the policy countries to abide with these countries’ overall emissions cap.

Climate policy could, alternatively, take the form of a carbon tax. No comprehensive carbon tax policy is so far used or seriously contemplated.¹ To most observers the differences between a climate policy involving a carbon tax, and a cap equivalent to (expected) emissions under a tax, are small and not decisive for the choice of policy.² Two, widely recognized, differences are that under uncertainty the effects differ as only the emissions level will vary under a tax, while only the emissions price will vary under a cap;³ and that the government’s ability to recuperate income may be greater under a tax as many or most emissions permits are often handed out for free to emitters under a cap. Both differences speak in favor of a tax over a cap.⁴

This paper focuses on two other differences between taxes and caps that have so far been less widely discussed. First, carbon taxes and c-a-t schemes work differently when policy countries are net fossil fuel importers, and exporters behave strategically. Secondly, offset schemes may work differently under the two policies. Both differences, it is shown, tend to favor taxes over cap solutions for the countries implementing (or benefiting from) a climate policy.

¹ A few smaller nations, including Norway already from 1991, have enacted unilateral and relatively comprehensive carbon taxes. But these countries constitute a very small fraction of global emissions; and their carbon tax rates are too low to matter neither locally nor globally.

² We will here focus on carbon emissions from fossil fuels. While there are other greenhouse gas emissions, fossil-fuel based emissions are the most important and likely to become more so over time.

³ Weitzman’s (1974) static analysis supports the view that when uncertainty takes the form that benefits (in terms of reduced climate change) of mitigation policy are less uncertain than costs in the short run (which, arguably, is the case in practice), a tax solution is preferred on welfare grounds. For dynamic analyses supporting the same basic view, see Hoel and Karp (2001, 2002), Pizer (2002), and Karp and Costello (2004).

⁴ A third, politically important, difference between taxes and caps is in terms of transparency of gains and losses to different affected parties. Under c-a-t it is much easier to make these distributional implications obscure. This may be a political reason why many countries seem to opt for c-a-t solutions, despite of the drawbacks pointed out. We will here ignore such issues by focusing entirely on more standard economic arguments.
In my model it is assumed that all countries can be split meaningfully into two groups, importers, and exporters, of fossil fuels. Most major countries belong to the first group, including all countries that may wish to establish a climate policy. The exporting group is smaller, notably the OPEC countries and Russia.\(^5\)

To make the model realistic, only a “policy bloc” of fuel-importing countries (today, Annex B countries that have ratified Kyoto) is assumed to pursue a climate policy. Other fuel importers, the “fringe” (all fuel-importing emerging and developing countries, plus the U.S.) have no policy. I assume that these act in an uncoordinated fashion, each perceiving to have no market power in fuel markets.

Producer countries, and the policy bloc, are both assumed to select policies that are fully coordinated \textit{within} each group. Policies are not coordinated \textit{across} the two groups. The model is static in focusing on short-run demand and supply relations. Many further issues are not directly addressed by this paper, in particular, the issue of fossil fuels as exhaustible resources.\(^6\) In particular, Sinn’s (2008) “green paradox” argument that carbon pricing could lead to increased emissions in the short run, is ignored.\(^7\)

The policy bloc can establish an “offset scheme” whereby abatement may be induced in the fringe. There are two potential motivations for establishing such a scheme. First, overall emissions can in this way be reduced and perhaps more cheaply than through mitigation in bloc countries. Secondly, a fuel demand reduction in the fringe may help to reduce the fuel export price. Under c-a-t, I assume that the entire market for quotas is competitive with a unitary trading price in both the policy bloc and fringe. Fringe country emitters must then be paid an amount per abated emissions which equals the quota price facing policy country emitters. Under a carbon tax the idea of an offset scheme is less familiar. I here assume that offsets are purchased from fringe countries by the policy bloc at a given offset price, set by this bloc, which clears the offset market in fringe countries. This offset price could then in principle be either higher or lower than the carbon tax charged to policy bloc emitters. Importantly also, we assume no informational problems in implementing offsets and that all offsets are “additional”.\(^8\)

\(^5\) Norway is an outlier which, arguably, belongs to both groups.

\(^6\) This requires a dynamic model for a more complete analysis. For related dynamic presentations, see e.g. Bergstrom (1982), Karp (1984), Karp and Newbery (1991); and more recently, Rubio and Escriche (2001), Rubio (2005), Liski and Tahvonen (2004), and Salo and Tahvonen (2001).

\(^7\) A main issue here is the profile of both current and expected future carbon taxes. It can be shown that if the future carbon tax is expected to increase at a particularly rapid rate (in excess of the rate of discount), an increase in the general level of carbon taxation could induce Sinn’s paradox by increasing emissions in the short run. Another factor is that if climate policy partly takes the form of support to developing a backstop for replacing fossil fuels, emissions may be worsened in the short run by more stringent climate policy; see e.g Strand (2007), Ploeg and Withagen (2010), and Hoel (2010) with further discussion of the green paradox.

\(^8\) While full additionality is our benchmark assumption, less than full additionality is likely to be the norm in practice, for a variety of reasons; see e.g Rosendahl and Strand (2009). Less than full additionality will in practice make offsets less efficient and thus less attractive for the policy bloc.
A main result is that a carbon tax solution is generally preferred to cap-and-trade (c-a-t) for both
the policy bloc and the fringe. The main difference lies in the response of a monopolistic fuel
exporter, setting the fossil fuel export price, to a tax versus the response to a cap. Generally,
importers’ demand for fuel will be less elastic when some of these countries set a cap. This effect
is stronger when the policy bloc is larger. The demand function will then be less elastic, leading
to a higher fuel export price. This hurts both the policy bloc and the fringe.

Individual countries in the fringe will fare best under a carbon tax, and the policy bloc makes up
a large fraction of overall fuel demand. With a smaller the fringe, each country in the fringe
benefits more from being a “free rider” on a carbon tax set by the policy bloc. A large policy
bloc translates into great market power of this bloc in the fossil fuel markets. The optimal carbon
tax is then higher for a larger policy bloc; and it puts more downward pressure on the export
price for a given tax. This all translates into a lower fuel export price, which benefits the fringe.

A similar benefit for the fringe, due to a large policy bloc, does not materialize under a cap
policy. The fuel export price is then in most cases set higher by exporters when the policy bloc
comprises a larger share of total demand; not lower as under a carbon tax.

The preference for taxes over c-a-t for fuel importers we found in a similar context already by
Berger, Fimreite, Golombek and Hoel (1992), and Berg, Kverndokk and Rosendahl (1997). Two
other papers of mine also derive similar results. Strand (2010) considers a similar model only
with no offset market. Strand (2011) considers two fuels, one imported (oil) and one produced
by consumer countries. Importers’ oil demand is then somewhat elastic under a cap, allowing some
rent extraction by importers. A tax policy here still dominates a cap policy for fuel importers. See
Wirl (2010) for a recent dynamic model (focusing on unitary importer and exporter blocs) where
taxes dominate over caps as climate policy instruments for importers.

2. Model 1: The Policy Bloc Sets a Carbon Tax

2.1 Basics

Consider the following aggregate utility function related to fossil-fuel consumption for countries
with a climate policy (the “policy bloc”):

\[W_i = R_i - \frac{1}{2} \gamma_1 R_i^2 - p R_i \]

where \(\gamma_1 > 0 \), \(p \) = the fossil fuel import price. \(R_i \) is the fossil-fuel consumption for the policy
bloc, while \(R \) is global fossil-fuel consumption, while \(c_1 = \) a climate externality cost per unit of
global fossil fuel consumption for this group of countries. Equations (1), and other demand and
supply functions, all take “linear-quadratic” forms standard in the literature (and as in related
work by Strand (2009, 2011)). We assume (with little loss of generality) that fossil-fuel
importers produce no fuels, and that producer countries consume no fossil fuels and export all
their production.

We let \(R_F \) denote fuel consumption in the fringe. In equation (1), the last term represents an
assumption that the countries in the policy bloc are able to induce a reduction of the fringe’s
fossil fuel consumption through a subsidy q to those units of fossil fuel consumption in the fringe that yield the smallest net benefit from such consumption (so that this abatement is done in the most efficient way possible). This term expresses the net outlay by the policy bloc, related to such incentive payments from the policy bloc to the fringe. Such payments would represent a mechanism under a carbon tax scheme that would correspond closely to the effect of standard offset markets under a c-a-t scheme (such as the CDM). The “offset price”, q_1 (with subscript 1 denoting “model 1”), here however differs somewhat from the offset trading price under a c-a-t scheme, in particular as it is not necessarily identical to the domestic tax on emissions. The difference lies in the fact that under a c-a-t scheme, market mechanisms would tend to equalize external carbon trading prices with quota prices within the c-a-t scheme; which does not take place here.

Under model 1, the policy bloc thus uses two instruments. First, it imposes an excise tax, t_1, per unit of the imported fossil fuel. This leaves the consumer fuel price in these countries at $p + t_1$. Fossil fuels are imported by many small agents, each of whom behaves competitively. The public (private sector) demanding fossil fuels in this group of countries maximizes

$$V_i = R_i - \frac{1}{2} \gamma_i R_i^2 - (p + t_1) R_i$$

with respect to R_i, yielding the first-order condition

$$R_i = \frac{1 - p - t_1}{\gamma_i}.$$

γ_i is the inverse demand sensitivity of fossil fuels with respect to price in the policy bloc.

There also exists a fringe of fuel-importing countries with no climate policy (with subscripts F), with aggregate utility function (in the absence of transfers from the policy bloc)

$$W_{F0} = R_{F0} - \frac{1}{2} \gamma_F R_{F0}^2 - p R_{F0} - c_F R,$$

where subscript 0 denotes the case with no transfers. c_F is the climate-related externality of global fossil fuel consumption for the fringe. These countries in aggregate behave competitively. In the absence of transfers these countries would maximize

$$V_{F0} = R_{F0} - \frac{1}{2} \gamma_F R_{F0}^2 - p R_{F0}$$

with respect to R_{F0}, yielding the first-order condition

$$R_{F0} = \frac{1 - p}{\gamma_F},$$

where γ_F (> 0) is the inverse demand sensitivity for the fringe. (2) and (5) imply an assumption that the two blocs have identical demand functions for the fossil fuel apart from the parameters γ_1 and γ_F which may differ. Both functions are assumed to be linear and in both cases with a limit
price (at which demand vanishes) of unity, but the functions have different slopes, $1/\gamma_1$ and $1/\gamma_F$. Call the slope of the (global) aggregate demand function $1/\gamma$. Define $\gamma_1 = \gamma/h$, $\gamma_F = \gamma/(1-h)$, where h and $1-h$ are the relative sizes of the policy bloc and the fringe (corresponding to their relative levels of fuel consumption in the case where the fuel consumer price is the same in both blocs; or if the blocs are in other respects homogeneous, h and $1-h$ would correspond to the relative sizes of the “policy bloc” and the “fringe”).

The second policy of the policy bloc is to pay a subsidy q_1 per unit of “foregone fossil fuel consumption” in the fringe; i.e., consumption that would have materialized, had it not been for this subsidy. In the case studied here, the policy bloc is assumed to provide incentives to the fringe, through incentive payments q_1 per unit of reduction in fossil fuel consumption below the “benchmark” described by (6). We assume that this leads to an effective fuel price at the margin equal to $p+q_1$, and such that the policy bloc makes up this difference through a subsidy to fringe fuel consumers. The induced fuel consumption in the fringe is then assumed to be

$$R_F = \frac{1-h}{\gamma} (1 - p - q_1).$$

The subsidy is assumed to be paid only on the amount of fuel consumption avoided in the fringe by the incentive payment, called $\Delta R_F = R_{F0} - R_F$, given by

$$\Delta R_F = \frac{1-h}{\gamma} q_1.$$

Aggregate fossil-fuel demand, from both blocs combined, is now

$$R = R_1 + R_F = h \frac{1-p-t_1}{\gamma} + (1-h) \frac{1-p-q_1}{\gamma} = \frac{1-p-h t_1 - (1-h) q_1}{\gamma}.$$

Assume a single (unified) producer country or region with aggregate utility function

$$W_2 = \Pi_2 + sR - c_2 R,$$

where Π_2 is net profit of petroleum producers, sR is excise tax revenue for governments in fuel exporting countries, while $c_2 R$ denotes negative emissions externalities as evaluated by the exporter. Net profits of producers are

$$\Pi_2 = (p-s)R - p_0 R - \frac{1}{2} \phi R^2,$$

where p_0 is a lower bound for marginal fuel extraction cost. Maximizing (11) with respect to R yields the fossil-fuel supply function

9 This again requires full additionality: all offsets paid for are “real” in the sense that no offset payments are made unless these payments lead to additional abatement. As discussed in the final section, this is an idealized situation not likely to occur in reality.
(12) \[p = p_0 + s + \phi R. \]

\(\phi \) (> 0) here represents the (inverse) supply sensitivity of petroleum output. \(s \) is the unit producer excise tax. \(p_0 + s > 0 \); thus the supply elasticity is less than unit.

The externality cost of one unit of carbon emissions, for all fuel importers, is called \(c \). Assume for simplicity that the externality cost for the policy bloc is proportional to the size parameter \(h \). Thus the marginal externality cost for the policy bloc is \(hc \), and for the fringe \((1-h)c\).\(^{10}\) Individual fringe countries are however small and ignore this factor in their own decision. The global externality cost per fossil fuel unit equals \(c + c_2 \), which would correspond to a Pigou tax imposed by a benevolent global regulator, given that markets are otherwise competitive.

Solving (9) and (12) for \(R \) and \(p \) as functions of the tax parameters \(t_1, q_1 \) and \(s \) yields

(13) \[R = \frac{1 - p_0 - s - ht_1 - (1-h)q_1}{\gamma + \phi} \]

(14) \[p = \frac{\gamma}{\gamma + \phi} (p_0 + s) + \frac{\phi}{\gamma + \phi} (1 - ht_1 - (1-h)q_1). \]

We also derive fuel demand for each of the two blocs as functions of the taxes \(s \) and \(t_1 \) and the offset price \(q_1 \), as follows:

(15) \[R_1 = \frac{h}{\gamma(\gamma + \phi)} \left[\gamma(1-p_0-s) - (\gamma + (1-h)\phi)t_1 + (1-h)\phi q_1 \right] \]

(16) \[R_F = \frac{1-h}{\gamma(\gamma + \phi)} \left[\gamma(1-p_0-s) + \phi ht_1 - (\gamma + \phi h)q_1 \right]. \]

A higher \(q_1 \) increases \(R_1 \) (but lowers \(R \)), since \(p \) is reduced thus incentivizing higher policy bloc fuel demand. Indeed, this is the basic purpose for the policy bloc of “subsidizing offsets” in the fringe.

2.2 The policy bloc solution

An authority representing all countries in the policy bloc sets \(t_1 \) and \(q_1 \) to maximize \(W_1 \) in (1), considering its own fuel demand response (15), the aggregate fuel demand response (13), and the

\(^{10}\) This assumption is made for convenience and with the aim to facilitate analysis of parametric changes in \(h \), below. Given that we always have a (sizeable) bloc with no policy, we could equally have assumed that the marginal externality cost for this bloc differs from that for the policy bloc. Indeed, we know that the impacts of climate change are likely to vary substantially across countries. A more realistic calibration of the model to the world economy would need to take such differences into consideration.
export price response (14), to changes in t_1 and q_1; while the exporter tax, s, is taken as exogenous. This yields the following set of first-order conditions for the policy bloc:

\[\frac{dW_i}{dt_i} = (1 - \gamma R_i - p) \frac{\partial R_i}{\partial t_i} - R_i \frac{\partial p}{\partial t_i} - hc \frac{\partial R}{\partial t_i} = 0 \]

\[\frac{dW_i}{dq_i} = (1 - \gamma R_i - p) \frac{\partial R_i}{\partial q_i} - R_i \frac{\partial p}{\partial q_i} - hc \frac{\partial R}{\partial q_i} - 2 \frac{1 - h}{\gamma} q_i = 0, \]

where we recognize from (3) that

\[1 - \gamma R_i - p = t_i. \]

The following two equations now solve simultaneously for t_1 and q_1, expressed as functions of the exporter tax, s (taken as exogenous by the policy bloc):

\[t_i = \frac{2h\gamma}{2(\gamma + \phi)^2 - h(1 + h)\phi^2} [\phi(1 - p_0 - s) + (\gamma + \phi)c] \]

\[q_i = \frac{h\gamma}{2(\gamma + \phi)^2 - h(1 + h)\phi^2} [\phi(1 - p_0 - s) + (\gamma + \phi)c] = \frac{1}{2} t_i. \]

t_1 and q_1 are here set, interestingly, in a strict two-to-one ratio. When h is small, t_1 and q_1 are both small: it is then unattractive for the policy bloc to charge high domestic carbon taxes, nor induce much carbon offsets in the fringe, for two separate reasons. First, a low h implies that the climate externality for the policy bloc, hc, is small, so that the related “Pigou” tax is small. Secondly, a low h implies small market power of the policy bloc in the fossil fuel market.

The offset incentive price q, in (20), is set at exactly half the level of the domestic tax t_1 in the policy bloc. This is related to the fact that offset payments go to foreign actors (and not parties within the policy bloc). This affects the optimal volume of foreign offsets negatively relative to the volume of domestic offsets through the domestic carbon tax t. When the policy bloc then acts in a unified fashion, as a monopsonistic purchaser of offsets from fringe countries (which themselves act non-cooperatively), offset purchases will be limited in this particular way, to maximize the net return for the policy bloc from such purchases.

Consider next a constrained optimal carbon tax given that the offset price is exogenous, and in general not optimal. We may, for such a case, express t_1 as follows:

\[t_i = \frac{h}{(\gamma + \phi)^2 - h^2\phi^2} [\gamma(\gamma + \phi)c + \gamma\phi(1 - p_0 - s) + (1 - h)\phi^2 q_i]. \]

We see that when q_1 is set higher (corresponding also to a larger volume of offsets), t_1 is set higher in response. Intuitively, a greater amount of offsets in the fringe leads to a lower fuel export price which “gives room for” (or makes profitable) a higher carbon tax in the policy bloc.
2.3 The exporter solution

The producer/exporter bloc maximizes bloc welfare, \(W_2 \), with respect to its fuel export tax \(s \), taking the supply function (12) from its own individual producers, the price relation (14), and the importer-determined tax rate and offset price, \(t_1 \) and \(q_1 \), as given. The first-order condition for this problem is

\[
\frac{dW_2}{ds} = (p - p_0 - \phi R - c_2) \left(- \frac{1}{\gamma + \phi} \right) + R \frac{\gamma}{\gamma + \phi} = 0,
\]

which yields the following condition for optimal \(R \) in terms of the export price, \(p \):

\[
R = \frac{p - p_0 - c_2}{\gamma + \phi}.
\]

We may now solve for \(s \), \(p \) and \(R \), as functions of the tax \(t \) and subsidy rate \(q_1 \) set by the policy bloc. We find the following solution for \(s \):

\[
s = \frac{\gamma}{2\gamma + \phi} (1 - p_0 - ht_1 - (1-h)q_1) + \frac{1}{2\gamma + \phi} \left(\frac{p - p_0 - c_2}{\gamma + \phi} \right).
\]

As expected, the exporter’s optimal fuel tax, \(s \), is reduced in response to increases in both \(t_1 \) and \(q_1 \). This effect is stronger for \(t_1 \) (\(q_1 \)) when \(h > (s) \frac{1}{2} \), and the fraction of the policy bloc in total fuel demand is greater (smaller) than one half. An interesting consequence is that when offsets are applied (\(q > 0 \)), the exporter’s fuel tax is lower.

2.4 Overall Nash Equilibrium solution

The simultaneous solution to (19) and (24) for \(t_1 \) and \(s \), given \(t_1 = 2q_1 \), here constitute a Nash Equilibrium of the non-cooperative tax-setting game between the policy bloc and the fuel exporting bloc. This solution can be characterized by

\[
t_1 = \frac{4\gamma}{D_1} \left[\phi(1 - p_0 - c_2) + (2\gamma + \phi)c \right],
\]

\[
s = \frac{2}{D_1} \left[2\gamma(\gamma + \phi) - h(1+h)\gamma \varphi \right] (1 - p_0) + \left[2(\gamma + \phi)^2 - h(1+h)\phi^2 \right] c_2 - h(1+h)\gamma^2 c_1,
\]

where

\[
D_1 = 2(\gamma + \phi) [2(\gamma + \phi) - h(1+h)\varphi].
\]

To interpret these expressions we will mainly rely on simulations, based on simplifying parametric assumptions, in section 4.
Two further features of the solution will be considered here. The first is what we may call the “incentivized emissions” level, which describes net emissions as an outcome of incentive mechanisms applied \((t_1, \text{ and } q_1)\), both in the policy bloc and in the fringe. This emissions level corresponds notionally to a cap to be discussed under model 2 in the next section. It can be defined by

\[
R_{11} = R_1 - \Delta R_F = \frac{1}{\gamma} \left[h(1 - p) - \frac{1}{2}(1 + h)t_1 \right].
\]

This magnitude is simulated in section 4 below, for some parametric cases. We find quite generally that \(R_{11} > 0\) (regardless of parameter values, the emission rate in the policy bloc always exceeds the amount of emissions offset in the fringe).

The second feature is the amount of abatement taking place in the policy bloc versus fringe (in terms of reducing \(R\)), by the tax and offset policies applied. From (13) (remembering that \(t_1 = 2q_1\)) we find that \(R\) is reduced more (less) in the policy bloc than in the fringe given that \(h > (\leq) 1/3\). Thus in particular, when \(h = 1/3\), it is optimal for the policy bloc to implement equally much abatement in each of the two blocs.

3. Model 2: The Policy Bloc Sets a Cap

3.1 Basics

In our second model, the policy bloc sets a cap on its emissions, still taking fringe demand as exogenous. A difference from Strand (2010) is that the cap can now be achieved in part through a given amount of “offsets” by the fringe. Such implemented “offsets” give room for a higher emissions rate within the policy bloc itself, given that the cap has already been set. Call the overall cap \(R_P\), and the allowable amount offsets \(R_{FP}\). Emissions by the policy bloc, \(R_1\), are then given by \(R_P + R_{FP}\) (the reason being that the offsets \(R_{FP}\) give room for this much extra emissions in the policy bloc, over and above the cap that the bloc has set). Denote still by \(R_F\) the actual fringe emissions, and by \(R_{F0}\) fringe emissions in the (counterfactual, but here still well defined) case where no offsets would be induced in the fringe; then \(R_F = R_{F0} - R_{FP}\). Actual emissions, \(R\), are then given alternatively as \(R_1 + R_F\), or as \(R_P + R_{F0}\). We will in this model assume free trading of emissions rights within the policy bloc, at a unified quota price, which we denote by \(t_2\) (so as to apply parallel symbols with the tax case).\(^{11}\) Equilibrium in the quota market requires emissions offsets to be purchased from the fringe at the price \(t_2\).\(^{12}\)

\(^{11}\) Whether or not domestic quotas are auctioned off, or given out to emitters for free, plays no formal role here.

\(^{12}\) This is a requirement for offset market equilibrium: domestic emitters in the policy bloc must be indifferent between abating one unit of emissions, and purchasing one unit of offsets whereby abatement is avoided.
I will put two constraints on the number of allowable offsets, in the amount R_{PF}. First, R_{PF} must be non-negative. Secondly, this number is, reasonably, is no greater than the amount of abatement that would take place in the fringe, given that a uniform carbon price equal to t would be enforced in the fringe. A carbon price no greater than t_2, which we may call q_2, would then implement the offset quota R_{OF}. I simplify by assuming that offsets are always implemented efficiently. By this I mean that for any one unit of potential emissions that are actually offset through incentive payments from the policy bloc to the fringe, the mitigation cost is lower than for any one unit of residual emissions (where offsets are not taking place). Formally, we can treat the strategy of the policy bloc as setting the quota trading price of emission rights within the bloc, which will be dual to the quantity solution. This implies that the policy of the policy bloc may be viewed as determined in the same way as under policy 1, with the bloc setting a tax at the level of the equilibrium quota trading price under the optimal cap. The basic strategy of the fringe is also the same in this case as under policy.

A consequence of this is that the amount of offsets in the fringe, to be financed by the policy bloc, is still given by (8). The offset price is however different here. Remember that we now require the offset price in the fringe to equal the domestic quota price in the policy bloc countries (equivalent to the tax t_2) as a condition for market clearance in the overall quota market. Thus in the last expression in (1), q_2 is now replaced by the domestic trading price in the policy bloc, t_2. Importantly, no similar constraint on the offset trading price was imposed in model 1, where instead policy bloc country governments were assumed to implement offsets directly via transfer payments to fringe countries, and where the offset trading price could be set freely, and optimally.

3.2 Importer solution

Relations (10)-(16), from model 1, are still valid here. Also, the fuel demand functions of the policy bloc and the fringe, as viewed by each, can now still be viewed as given by (3) and (6), where t in (3) is interpreted as the quota price within the c-a-t scheme in the policy bloc. In fact, little changes formally from the point of view of fuel demanders, who are at the same time emitters. (15) still describes the strategy of the policy bloc, interpreted alternatively as the conditions for its optimal energy demand R_1, or its optimal quota price t, in either case taking the fuel import price, p, as determined by (12), where s is taken as exogenous.

Differentiating (1) with respect to t and q in this case gives the following set of equations:

13 Note that this is not an obvious outcome, since, in general, the unit incentive pay by policy bloc emitters to the fringe, t_2, is generally higher than the carbon price that would otherwise implement the actual offsets taking place in the fringe, which is q.

14 This is entirely analogous to the tax and a quota solution being formally identical for fuel consuming countries facing a given fuel import price, under full certainty and with full auctioning of emissions quotas.
After inserting from the various partial derivatives (29)-(30) take the following form:

\[
(31) \quad t_2 = -\frac{1-h}{h} q_2 + \frac{h \gamma}{(\gamma + \phi)^2 - h^2 \phi^2} \{\phi(1-p_0-s)+(\gamma+\phi)c\}
\]

\[
(32) \quad q_2 = \frac{1}{h(1-h)\phi^2} \left[\left((\gamma + \phi)^2 - h^2 \phi^2\right)t_2 - h\gamma(\gamma + \phi)c - h\gamma\phi(1-p_0-s)\right]
\]

Solving for \(t_2 \) and \(q_2 \) from this set of equations, we find:

\[
(33) \quad t_2 = \frac{h \gamma}{(\gamma + \phi)^2 - h^2 \phi^2} \{\phi(1-p_0-s)+(\gamma+\phi)c\}
\]

\[
(34) \quad q_2 = 0.
\]

This is however not the optimal solution to this problem. A further inspection of the system (29)-(30) namely reveals that the two equations constitute a saddle-point solution, where the partial derivative with respect to \(t_2 \) provides a partial maximum, while the partial with respect to \(q_2 \) provides a partial (local) minimum. The solution \(q_2 = 0 \) (implying that no offsets are realized) is thus a local minimum and not maximum. (33)-(34) then cannot be invoked to solve this problem. (29) must be invoked alone to solve for \(t_2 \), together with a border constraint \(q_2 \leq t_2 \) (since under the problem as set up here, when \(q_2 = t_2 \), all offsets are realized that have a cost less than or equal to \(t_2 \)). Setting \(q_2 \) at its maximum limit we find:

\[
(35) \quad t_2 = q_2 = \frac{h^2 \gamma}{(\gamma + \phi)^2 - h^2 \phi^2} \{\phi(1-p_0-s)+(\gamma+\phi)c\}.
\]

Comparing (35) to (19), we see that \(t_2 \) is always lower here than in the tax case (for any given export tax \(s \)); but this difference is small when \(h \) is close to one. When \(h \) is relatively low, by contrast, the difference is greater; the ratio of \(t_2/t_1 \) converges to zero as \(h \) goes to zero.
In this model, all net rent arising in the offset market flows to potential emitters in the fringe. This follows from the assumption of perfect competition and free arbitrage in the offset market, so that all units in that market (whether domestic in the policy bloc or purchased from the fringe) need to be traded at a uniform price.\(^1\)

It is here thus optimal for the policy bloc to fully utilize all available options for offsets by setting \(q_2 = t_2\), which means that all offsets with cost below \(t_2\) are utilized. Offsets are in general more costly to the policy bloc in this case than under model 1 (where they could be bought at a "discount" relative to the domestic tax \(t_1\)); here they must always be paid at full cost \(t_2\). But this also serves as a "drag" on the internal price of carbon within the policy bloc, \(t_2\). From (30), \(t_2\) is reduced below \(t_1\) (the carbon tax) in model 1.

In model 1, by contrast, there was no condition that offset quotas be purchased at the carbon tax rate; generally the rate at which offsets are purchased in that case, \(q_1\), was independent of, and lower than, the carbon tax in that model, \(t_1\). The fact that quotas can be purchased more cheaply leads to a positive volume of offsets in the fringe, in the amount \((1-h)q/\gamma\). This also serves to lower the fuel import price.

In fashion similar to (21) under model 1, we can also in model 2 study the behavior of the carbon price in the policy bloc (here, the quota price) when the volume of offsets is not optimal, but lower than the level that clears the market in fringe countries. This is equivalent to setting \(q_2\) at lower levels (and below \(t_2\)) in (31). It is here immediate that a lower \(q_2\) increases \(t_2\); this is the direct opposite conclusion to that under model 1. The reason is that, here, there is for a given \(h\) (and given \(s\)) a given total quota in the optimal solution. Fewer offsets then "give room for" less domestic emissions in the policy bloc, which corresponds to a higher quota price.

3.3 Exporter solution

Consider now the strategy of fuel exporters. This now changes more dramatically from the case under model 1. Exporters will no longer face an importer tax but instead a cap in the amount \(R_p\). For the fringe there is no change in strategy. Thus, instead of (9), the exporter will be perceived to face the following aggregate demand function for fuel:

\[
R = R_i + R_e = R_p + R_{f0} = R_p + (1-h)\frac{1-P}{\gamma}
\]

\(^1\)Alternatively, one might open up for price differentiation, e.g. with bargaining between policy bloc purchasers and fringe sellers of emission quotas, offset trades would be more lucrative for the policy bloc. One such case is treated under model 1, where the government purchases quotas directly from fringe emitters, at lowest possible prices, independent of \(t\) (below this level).
where \(R_\text{p} \), the emissions cap set by the policy bloc, now is taken as a fixed number by the exporter. We may now solve (12) and (36) for \(p \) and \(R \) to yield

\[
\begin{align*}
p &= \frac{1}{\gamma + (1-h)\phi} [\gamma(p_0 + s) + \gamma\phi R_\text{p} + (1-h)\phi] \\
R &= \frac{\gamma}{\gamma + (1-h)\phi} R_\text{p} + \frac{1-h}{\gamma + (1-h)\phi} (1-p_0 - s)
\end{align*}
\]

The exporter, taking (37)-(38) and \(R_\text{p} \) as given, faces the following responses to changes in \(s \):

\[
\frac{\partial p}{\partial s} = \frac{\gamma}{\gamma + (1-h)\phi}, \quad \frac{\partial R}{\partial s} = -\frac{1-h}{\gamma + (1-h)\phi}.
\]

This yields the following condition for the exporter’s optimal strategy in this case:

\[
dW_2 \frac{dW_2}{ds} = (p - p_0 - \phi R - c_2) \left(-\frac{1-h}{\gamma + (1-h)\phi} \right) + R \frac{\gamma}{\gamma + (1-h)\phi} = 0,
\]

with the corresponding optimal condition on \(R \):

\[
R = \frac{1-h}{\gamma + (1-h)\phi} (p - p_0 - c_2).
\]

Even though the exporter considers \(R_\text{p} \) as exogenous in its own optimization, \(R_\text{p} \) is here assumed to be set optimally by the policy bloc, as part of the market equilibrium.\(^{17}\) Note also that \(R \) and \(p \)

are still determined by (11)-(12). We then find \(s \), \(p \) and \(R \) as functions of \(t_2 \) and \(q_2 \), as follows:

\[
s = \frac{\gamma}{(2-h)\gamma + (1-h)\phi} (1-p_0 - ht_2 - (1-h)q_2) + \frac{(1-h)(\gamma + \phi)}{(2-h)\gamma + (1-h)\phi} c_2
\]

It is of interest to consider how the equilibrium export price changes with \(h \) when the importer carbon price, \(t_2 \), is at a given level. The export price can here be expressed as

\[
p - p_0 = \frac{\gamma + (1-h)\phi}{(2-h)\gamma + (1-h)\phi} (1-p_0 - ht_2 - (1-h)q_2) + \frac{(1-h)\gamma}{(2-h)\gamma + (1-h)\phi} c_2
\]

\(^{16}\) We remark that this solution is relevant, and reasonable, only when \(h \) is “not too large”. In fact, no solution with positive production exists in this model when \(h \) tends to unity.

\(^{17}\) In this case, we note, \(t \) is interpreted not as a tax but instead as the equilibrium emissions quota price at which emissions quotas (proportional to fuel consumption) are traded within the policy bloc, and with parties in the fringe which engage in offsets.
Comparing to the case where the policy bloc set a carbon tax, \(p \) is greater here, for any given \(t \) (with \(t = t_1 \) as the carbon tax in model 1, and \(t = t_2 \) as the carbon quota price in model 2).

We find:

\[
(45) \quad \frac{dp}{dh} = \frac{\gamma^2}{[\gamma + (1-h)(\gamma + \phi)]^2} (1 - p_0 - h t_2 - (1-h)q_2 - c_2) - \frac{\gamma + (1-h)\phi}{\gamma + (1-h)(\gamma + \phi)} \frac{d(ht_2)}{dh}
\]

This expression is always positive when \(h t_2 \) is held constant as \(h \) increases (so that \(t_2 \) falls proportionately). But it is also positive when \(h t_2 \) increases with \(h \), provided that the first term dominates over the second. This is always the case when \(h \) is initially small; \(t_2 \) is then also small (from (45) below); and \(d(ht_2) \) must consequently be small. We thus find that when \(h \) is small at the outset, the export price always increases when the policy bloc comprises a larger fraction of total fuel demand (\(h \) increases). This is diametrically opposite to the conclusion under model 1, where the policy bloc was assumed to use a carbon tax. We will also find, in the simulations in section 4 below, that \(p \) can increase in \(h \), also for larger \(h \) values (when \(c \) is low).

3.4 Overall solution

Overall equilibrium is in this case found by solving (35) and (42) for \(t_2 \) and \(s \) (noting that \(q_2 = t_2 \)). This yields

\[
(46) \quad t_2 = \frac{h^2 \gamma}{D_2} ([(2-h)\gamma + (1-h)\phi]c + (1-h)\phi(1-p_0 - c_2))
\]

\[
(47) \quad s = \frac{(1-h)[(\gamma + \phi)^2 - h^2 \phi^2]c_2 + \gamma[(\gamma + (1-h^2)\phi)(1-p_0) - h^2 \gamma^2 c]}{D_2}
\]

where

\[
(48) \quad D_2 = (\gamma + \phi)[2\gamma + (1-h^2)\phi] - h[(\gamma + \phi)^2 - h^2 \phi^2]
\]

We here first find that \(t \) (the quota trading price of carbon) always converges to \(c \) as \(h \) converges to one. The relationship between \(t_2 \) and \(h \) is always rising for low \(h \), but could either fall or rise when \(h \) is larger; this becomes clear from the simulations below.

\(s \) is in general greater here than in model 1, and more so when \(h \) is higher (for \(h = 0 \) the two expressions are identical, as we are back to the case of no climate policy). The exporter then adopts a more aggressive taxation strategy in this case. The reason is the smaller demand elasticity faced by the exporter.
Also in this case we may consider implications of the overall optimal solution for the optimal “cap” to be set, analogously with the amount of “incentivized emissions” (from (29)) under model 1. The optimal cap is here defined by R_{c2}, and given by

$$(49) \quad R_{c2} = R_i - \Delta R_f = \frac{1}{\gamma} [h(1-p) - t_2].$$

Simulations in section 4 below show that quite generally $R_{c2} > 0$ independent of h. This is similar to what was found in model 1. The intuition is also here that for low h (where, conceivably, the cap could be negative), the emissions price is too low to really matter in terms of emissions reductions.

Next, compare also here the amounts of abatement taking place in the policy bloc versus the fringe. From (13), (15) and (16) and inserting $q_2 = t_2$ we now simply have

$$(50) \quad R_i = \frac{h}{2} (1 - s - t_2) = hR$$

$$(51) \quad R_f = \frac{1-h}{2} (1 - s - t_2) = (1-h)R.$$

Thus in this case fuel demand in both the policy bloc and fringe is proportional to the size of either bloc. Thus fuel consumption is efficiently allocated across consumer countries, for any given global emissions target. This follows simply from $t_2 = q_2$: effective carbon prices are the same in both consumer regions.

4. Simulations

I now simulate the model solutions in a simplified case, setting $p_0 = c_0 = 0$, $\gamma = \varphi = 1$.\(^\text{18}\) For model 1, the parametric examples yield the following expressions for t_1 (and where $q_1 = \frac{1}{2} t_1$), s, and R (the level of fossil fuel consumption):

$$(25a) \quad t_1 = \frac{3c+1}{6-h(1+h)} h$$

$$(26a) \quad s = \frac{4 - h(1+h)(1+c)}{2[6-h(1+h)]}$$

\(^{18}\) I thankSauleh Siddiqui for help with the simulations.
\[R = \frac{1}{2} \frac{2 + h(1 + h)c}{2[6 - h(1 + h)]}. \]

For model 2 the expressions for \(t_2, s \) and \(R \) are (noting that \(q_2 = t_2 \) in this case):

\[t_2 = \frac{h^2}{6 - 4h - 2h^2 + h^3}[1 - h + (3 - 2h)c] \]

\[s = \frac{2 - h^2 - h^2 c}{6 - 4h - 2h^2 + h^3} \]

\[R = \frac{1 - h}{3 - 2h} (1 - ht_2). \]

These functions, and including \(p = s + R \), are simulated using continuous domain \([0, 1]\) for \(h \), and values 0, \(\frac{1}{4} \) and \(\frac{1}{2} \) for \(c \).

Figures 1-4 illustrate solution values as functions of \(h \), for a “benchmark” case of \(c = 0 \) (no climate concern). Everything is then driven by strategic concerns. Four sets of variables are shown: \(t \) and \(q \) (importer fuel/carbon tax or quota price; in figure 1); \(s \) (exporter fuel tax, in figure 2); \(R \) (consumed amount of the resource, in figure 3); and \(p \) (fuel export price; in figure 4); as functions of \(h \) (the policy bloc as share of all fuel-demanding countries). Here, as noted, the offset price in model 1 (in red) is always half the carbon tax (blue). Both are higher than the quota price (equal to the offset price) for model 2 (green). While the carbon tax in model 1 and the quota price in model 2 diverge early, the difference is greater when \(h \) is high.\footnote{As noted, however, the model is less suitable for describing what happens under a cap solution for high \(h \) values.} Both these variables decrease in \(h \) under an importer tax policy, but increase in \(h \) under an importer cap policy. The carbon price set by the policy bloc is dramatically higher with a carbon tax than with c-a-t when \(h \) is high. While the carbon tax increases strongly in \(h \), the quota price in the c-a-t case also increases in \(h \) up to a certain point, but is reduced when \(h \) increases further. Two factors here have opposite effects: a higher \(h \) makes the policy bloc more collusive and more aggressive in its pricing; but a higher \(h \) also makes the exporter (much) more aggressive which reduces the scope for rent extraction by the policy bloc. Interestingly, the policy bloc’s import tax or carbon price is everywhere positive even though there is no climate concern in this case.

Another result is that fossil fuel consumption drops in \(h \), slightly in the tax case, and more dramatically in the cap case. In the tax case this is “good” for importers as the import price is substantially reduced when \(h \) increases.
Figures 1-4: Carbon prices, export tax, import price and fuel demand, as functions of h for $c = 0$

Figures 5-8 below are not dramatically different from figures 1-4, but there are differences, which are greater when h is higher. A climate concern by the policy bloc hardly affects the bloc’s policy at all when h is very small, but affects it much more when h is high. The carbon tax and quota and offset prices are now also much higher. In particular, the quota price under model 2 is now uniformly rising in h. q_2 now (slightly) exceeds q_1 for high h (greater than about 0.65). This more aggressive tax strategy of the policy bloc leads to a greater reduction in both the import price, and total fossil fuel consumption, when h increases.
Figures 5-8: Carbon prices, export tax, import price and fuel demand, as functions of h for \(c = 0.25 \)

Figures 9-12 show the case of “high” climate concern for fuel importers. The carbon quota price under model 2, and the carbon tax under model 1, now differ by less, at least for high h. There is also a larger range of h for which \(q_2 > q_1 \). The tax in model 1, and the quota price in model 2, are now driven much more by the climate concern. While this concern is still negligible when h is small, it is big when h is large (since this concern is proportional to h which is the fraction of cooperating economies in setting the tax or quota). There is as before a big difference in the export tax between the two models. This difference is now however reduced slightly as h tends to 1. Fossil fuel demand now drops dramatically with h also in model 1.
We find, overall, that the carbon tax under a tax scheme \((t_1)\) is substantially higher than the domestic quota price in the policy bloc under a c-a-t scheme \((t_2)\), for all alternatives of the carbon externality \(c\). This difference is however not uniformly greater when \(h\) is higher. There are two main factors at play for explaining this relation.

The first factor is (as seen from figure 3 below) that the exporter tax is higher under an importer cap than under an importer tax; and more so when \(h\) is higher. The importer’s optimal response to such exporter behavior is to set a higher carbon price in the tax case (when the exporter tax, and thus the export price, is lower).\(^{20}\)

\(^{20}\) In fact, in the limit as \(h\) tends to unity, under a cap the Nash equilibrium solution in this model entails the exporter setting the export price at its maximal level choking off all demand; and the carbon quota price then being equal to
The second factor is related to the offset market and its functioning in the two models. In the tax case, under model 1, the domestic carbon tax in the policy bloc is independent of the offset price (effective within the fringe); there is no direct effect of the offset market on the domestic carbon tax. In model 2, by contrast, there is such an effect since the offset carbon price is now tied directly to the carbon price within the policy bloc (as the two must be the same). This factor tends to put a great downward pressure on the carbon price when the policy bloc is small and the fringe correspondingly large (h is small). In this case the offset market becomes a very large share of the overall abatement activity. When the fringe is small (h large), by contrast, this factor has much less influence (as the offset market then also becomes much less important). There is then much less downward pressure on the carbon price from an offset market in the cap case.

These two factors work in opposite directions with respect to the relationship between t_1 and t_2 when h increases. We find, in particular, that when $c = 0$, the difference between these two is strongly increasing in h. When $c = \frac{1}{4}$, this difference is still increasing but now almost “flat” over a large range for h. When $c = \frac{1}{2}$, the difference is reduced for higher h.

The offset price is half the carbon price in the tax case, and equal to the quota price in cap case. The offset price is generally lower in the c-a-t case than in the carbon tax case for low h and /or low c; but higher in the c-a-t case when both h and c are high. When h is low, the dominating factor is the “drag” (in the direction of low carbon prices) that the constraint that the offset price and the quota price in the policy bloc be equal in the c-a-t case. When h is high, by contrast, pricing in the offset market means little for the efficiency of the internal policy within the policy bloc. We then see that when c is relatively high (and the quota price also at similar level in the c-a-t case for high h), the constraint that $q_2 = t_2$ pushes q_2 above the level of q_1 in such cases.

Our final figures 13-15 depict the “incentivized quotas” R_{t1} in (28), and R_{c2} in (49). Under the numerical example these two expressions are

\[
R_{t1} = \frac{h}{2} \left[1 - s - \frac{1}{2} (3 - h) t_1 \right]
\]

\[
R_{c2} = h(1 - s - R) - t_2.
\]

R_{c2} corresponds to the optimal quota (accounting for offsets) set by the policy bloc in the c-a-t case. R_{t1} has a similar interpretation except as applied to the carbon tax case (combined with a government-managed offset scheme). We see that the “optimal quota” is similar for low h values (in fact slightly greater in the c-a-t case); but much smaller under c-a-t for high h values. The fact that it is greater for low h values reflects the property that less mitigation takes place in the c-a-t zero. This is of course an unrealistic economic model; see Strand (2010) for an elaboration and discussion of alternative equilibrium concepts for this case.
case for such values (as the carbon price, including the offset price, is lower in the c-a-t case than in the tax case for low h values). For higher h the overwhelming factor is that overall fuel demand is driven down by the increase in the export tax, s, in the c-a-t case but not in the carbon tax case.

Figures 13-15: Size of “cap quota” under carbon tax and c-a-t scheme, for different values of h and c

5. Conclusions and Final Comments

This paper has studied alternative climate policy strategies used by a fossil fuel-demanding “policy bloc” which implements a climate policy, facing a fuel-demanding group of countries that has no climate policy (a “fringe”), and a fuel-exporting bloc disinterested in climate policy. In addition the policy bloc has the possibility of purchasing “offsets” from the fringe, and I derive optimal “offset” policies on this basis. I consider two main policies variants. Under the first variant (model 1 in section 2), a carbon tax, t_1, is implemented in the policy bloc alone. In addition, the policy bloc purchases offsets from the fringe at a given offset price q_1, determined by the policy bloc, and which is independent of (and generally lower than) the carbon tax. This is implemented by making the offset price q_1 public in the fringe, and paying the offset price to all
potential emitters for reducing their emissions below their own pre-specified “baselines”. It is assumed that all “available” offsets, with marginal implementation cost at or below \(q \), are realized.

To my knowledge this is a first attempt in the literature to analyze optimal offset policies, in two ways: as a standard (CDM-type) market-based offset mechanism attached to a c-a-t scheme (in model 2); and as a (government-managed) offset scheme (where offsets are purchased directly by a central authority operating on behalf of all the policy bloc countries), alongside a carbon tax in the policy bloc (in model 1).

I show that the optimal value of the carbon price in the policy bloc, \(t \), in either model is influenced by both a climate (“Pigouvian”) motive, and a strategic motive whereby the policy bloc recognizes that it is able to influence the exporter’s fuel price through its tax. The positive carbon tax leads to a lower fuel import price, which benefits all fuel importers, including the fringe. The tax is set higher when the policy bloc is larger, for two separate reasons: First, the “Pigou” element is greater for a larger bloc; secondly, the strategic element, working to increase the tax so as to reduce overall fuel demand and consequently the fuel export price, is greater when the policy bloc is larger. Note that as a consequence of the higher carbon tax set by the policy bloc, fringe countries are helped; and they are helped more when the policy bloc is larger as a fraction of total fuel demand.

When the policy bloc sets a carbon tax (in model 1), the optimal offset price valid for the fringe is exactly half the optimal carbon tax within the bloc. This is related to the fact that the policy bloc, operating in a unified way in setting the offset price, behaves as a monopsonist versus the fringe, setting the offset price lower than its own tax; recognizing that the offset revenue goes to parties outside of the policy bloc itself. The objectives of using offsets are however basically the same as those of taxing, namely reducing carbon emissions, and reducing the export price of fuel through the reduction in overall fuel demand. Note that there is no formal tie between the carbon tax and the offset price in this case; the two are set independently, and optimally. The fact that offsets are used has only a relatively small impact on the optimal level of the carbon tax, which is to increase the carbon tax when offsets are also used. A way to view this result is that the use of an (efficient) offset mechanism increases the overall efficiency of carbon pricing and this also applies to the basic carbon tax within the policy bloc.

21 As noted we here do not specify in detail how such a scheme is to be enforced. These problems are essentially the same as those with enforcing the current CDM, and there making sure that emissions reductions are “real” (i.e., represent emissions reductions below emitters’ actual “baselines”).

22 The result that the offset price is exactly half of the tax follows from the linearity of demand and supply functions in our model, and does not generalize to other functions. More generally, the offset price will be lower than the carbon tax; but not necessarily one half.
In section 3 (model 2) I assume that the policy bloc sets and enforces a cap, which in addition to its own carbon emissions also encompasses offsets within the fringe (so that, when more offsets are used, the policy bloc is “allowed” to emit more). There is then a major strategic difference from the carbon tax case, as now one part of demand is fixed (regular demand from the fringe, which is not offset, is still variable). Once the cap has been fixed, overall fuel demand is then less sensitive to the fuel export price, than in the tax case of model 1. This leads the monopolistic exporter to set a higher fuel tax and thus export price. A higher export price is disadvantageous for all importers, when compared to the carbon tax case. A larger policy bloc now does not necessarily lead to a lower exporter fuel price; and does not necessarily benefit the fringe. There are two opposing effect on the fuel export price: the policy bloc being more monopolistic reduces the export price; but ex post fuel demand being less sensitive to price increases it. The monopoly power of the exporter is greater when the policy bloc is larger, since a larger fraction of overall fuel demand does not respond to changes in the fuel import price. This may translate into a higher export price when the policy bloc makes up a larger fraction of total fuel demand, which in turn hurts the fringe.

The other major issue in model 2 is how an optimal offset market then functions. With a unified market for quotas, within and outside of the policy bloc, there must be a single trading price whereby the policy bloc quota price, t_2, must equal the offset price in the fringe, q_2. This has two effects which distinguish this offset solution from that under model 1. First, tradability of quotas makes it no longer feasible for the policy bloc to under-price offsets relative to the price of internally traded quotas. Offsets are then less attractive than under model 1. The direct equilibrium relationship between t_2 and q_2 makes trading less attractive, with an optimal offset trading price that is unambiguously lower in model 2 than in model 1 in many cases (when the policy bloc is small and the fringe is large, and/or there is a small carbon externality). Opposite, the offset price itself is always higher when the policy bloc is large and the fringe small, and the carbon externality is great. The offset policy in this way acts as a “drag” on carbon pricing in the policy bloc under model 2. When h is large, the fringe is small, and the presence of the offset market then has a relatively small effect on the pricing policy for carbon within the policy bloc. t_1 is then only slightly higher than t_2. When h is small (and the fringe and thus the required volume of offsets is high), by contrast, this “drag” is great. The use of optimal offsets then tends to reduce the carbon price in the policy bloc a lot. Note then also that when h becomes small, fringe offsets becomes the overriding policy for mitigation for the policy bloc. Mitigation in the policy bloc is small for two reasons: a small policy bloc has little incentive to implement any climate policy whatsoever; and most mitigation happens in the fringe.

One overall conclusion from comparing the two models is that a tax policy is preferred to a cap policy by all fuel consuming countries, both by those that establish a climate policy, and by those that do not. Fundamentally, this is because a monopolistic exporter sets a higher fuel export price when a cap policy implemented by one group of fuel demanders (the “policy bloc”), than when this group instead uses a tax policy; and this higher price hurts all consumer countries.
The arguably most novel feature of this paper is to include an offset market in a model of optimal mitigation. This is done in a highly idealized way by assuming that offset markets are fully efficient. In particular, I assume that when the fringe faces an offset price equal to \(q \), the potential amount of mitigation implemented in the fringe is the same as when it faces a carbon tax of \(q \). This may be a useful benchmark against with to compare more realistic solutions; by itself it is not realistic, as I have argued elsewhere (Rosendahl and Strand (2009); Strand and Rosendahl (2010)). Much more likely, less mitigation would take place in the offsetting region; and it would be more expensive to carry out. The wider implications of such alternatives on the functioning of offset markets remains to be studied. But it is straightforward to predict that, in more “realistic” cases (with a less than perfectly functioning offset market), offsets will be less attractive, and their optimal volume smaller.

My result that the policy bloc finds it optimal to utilize a maximal volume of offsets under c-a-t (for a given offset price) is not immediately or intuitively obvious. This result follows in the model from the saddle point solution of the problem of the joint maximization problem with respect to price and volume of offsets. This result also requires further scrutiny in future work. One question here arising is what sorts of constraints follow from the, less than fully general, linear-quadratic structure of the model.

My model is also in other respects based on highly simplifying assumptions which could be relaxed. I here briefly mention a few of these; some work to rectify some of these problems is already under way.

A) There is no fuel production in consuming countries, and no fuel consumption in fuel-producing countries.

B) There is only one, homogeneous, fuel. Strand (2011) deals with the two-fuel case but in a model of two blocks only (exporters and importers). This is shown to change conclusions slightly; in particular by making the ex post fuel demand function potentially more elastic under c-a-t, thus making that solution less attractive.

C) Dynamic considerations are ignored; in particular, fossil fuels are viewed as a regular commodity with a stable short-run supply function. Work is currently under way (joint with Larry Karp) to compare tax and c-a-t solutions in a dynamic version of the current model.

D) A monolithic, and monopolistic, fuel exporter dictates the fuel export price; and there is no fringe of competitive fuel suppliers. A start of a competitive fringe analysis is found in Keutiben (2010).

E) All countries are assumed to be equally averse to climate change; and have equal loss (relative to their size) per unit of carbon emissions.
References

Berger, Kjell, Fimreite, Øyvind, Golombek, Rolf and Hoel, Michael (1992), The Oil Market and International Agreements on CO2 Emissions. Resources and Energy, 14, 315-336.

Hoel, Michael (2010), Is There a Green Paradox? CESifo working paper no 3168.

Wirl, Franz (2010), Global Warming: Prices Versus Quantities from a Strategic Point of View. Unpublished working paper, University of Vienna.