tries, regional CFC consumption declined 63% (from 110,873 to 40,654 ODP tons) over the period 1995–2002. Most countries now have consumption levels appropriate to meet the upcoming 2005 CFC reduction target, which is set at 50% of their baseline. Regional CFC production declined approximately 43% (from 57,183 to 32,346 ODP tons) over the same period. China accounted for 34% of the global CFC production in 2002.

Halons. East Asian consumption of halons declined about 82% (from 38,208 to 6,702 ODP tons) from 1995 to 2002. Over the same period, production of halons declined 82% (from 40,914 to 7,404 ODP tons). In 2002, China produced 76% of the global halon total.

Carbon tetrachloride. Regional consumption of carbon tetrachloride (CTC) increased from 1,063 to 20,736 ODP tons over the period 1995–2002. Regional production of CTC in 2002 was approximately 20,850 ODP tons. China accounted for 37% of the global CTC production in 2002.

China’s Context

China’s domestic ODS production and consumption have dominated the East Asian regional share of the market. With a large population and rapid industrialization and urbanization, China’s ODS consumption grew 12% per year from 1986 to 1994 due to increased demand for ODS-related products, especially rigid foams, refrigerants, and fire extinguishing agents. By 1997, China produced about 95,800...
ODP tons and consumed about 87,600 ODP tons of ODS. Six application sectors accounted for domestic ODS use in 1997.

The ODS most commonly produced and consumed in China are CFCs and halons; and to a lesser extent methyl chloroform and carbon tetrachloride. In 2002, China consumed 75% (30,621 ODP tons) of the East Asian share of CFCs, and produced almost 100% (32,269 ODP tons) of the regional share. CFCs were mainly used for soft and rigid polyurethane foams (CFC-11); domestic refrigerators (CFC-11 and -12); and industrial and commercial refrigeration (CFC-11, -12, -114, and -115). Smaller amounts were used for tobacco expansion (CFC-11), aerosols (CFC-12), and solvents (CFC-113). Halon consumption in 2002 was 6,604 ODP tons, while its production, entirely for the fire-fighting industry, was 7,408 ODP tons.

China uses a variety of substitutes for CFCs. The foam sector substitutes mainly butane, pentane, or carbon dioxide. In commercial refrigeration and air conditioning, HCFCs and HFCs are substituted. In 2002, China consumed about 77% (5,789 ODP tons) of the regional share of HCFCs, and accounted for 100% (8,651 ODP tons) of the regional production. HFC-134a is mixed with other refrigerants in domestic refrigerators, and as of 2002 is used in mobile air conditioners in all newly manufactured vehicles in China. The solvent sector will convert to semi-aqueous and other non-ODS technologies; carbon dioxide will be substituted in tobacco processing.

China Montreal Protocol Program

China and the World Bank began their partnership Montreal Protocol program in 1993. As of 2003, US$ 447 million have been committed by the Multilateral Fund to assist China in meeting its obligations to the Montreal Protocol, including funds for approved multi-year projects that will be released by 2010. A total of 285,000 ODP tons will be phased out as part of these commitments.

The focal point for the Montreal Protocol activities in China is the State Environment Protection Agency (SEPA). As Montreal Protocol phase-out activities have an impact on many different industrial sectors, SEPA heads a multi-agency Leading Group of 18 national ministries and agen-
cies. The Leading Group is responsible of ensuring China’s compliance with its Montreal Protocol obligations and of various issues pertaining ozone layer protection.

Two Approaches to Implementation

The China World Bank Montreal Protocol program is being implemented through four Bank projects, ODS I, II, III and IV. ODS I and II were completed in 1997, while ODS III and IV are ongoing and will be completed by 2010. Two distinct approaches to projects have been used to achieve ODS phase-out in China. First, a *project by project* approach, which involves phase-out projects that address individual enterprises. ODS I and II included 14 individual enterprises, and phased out 14,000 tons ODP at a total cost to the Multilateral Fund of US$ 12.9 million. As of March 2004, 87 enterprises will have received grants under ODS III. These grants amount to US$89 million, and they will achieve a phase-out of 16,000 ODP tons at a unit phase-out cost of US$5.56 per kg ODP.

The second approach to ODS phase-out in China is a sector approach, in which ODS phase-out is addressed in the context of a sector policy framework and of an overall sector phase-out strategy. The sector approach is more efficient and cost effective than the project by project approach, and its sustainability is ensured through institutional capacity building, policy instruments and financial incentives. ODS IV was conceived in 1997 as a policy and performance-based sector umbrella project. The project initially only included the halon sector, but other sector plans have since been added, after being approved by the Multilateral Fund. By the end of 2003, ODS IV comprised seven different sector approaches, with grant amounts totaling $344 million and an estimated phase-out of
The instruments of a Sector Approach

Performance-based disbursements and audits – All sector plans are based on pre-determined phase-out schedules, annual phase-out targets and specific performance indicators. China receives compensation for its phase-out efforts from the Multilateral Fund only when annual phase-out targets have been met and when performance-based indicators demonstrate that objectives have been accomplished. Conversely, penalties are applied to China when targets are not met. Performance audits for each sector must be conducted by independent auditors, on a yearly basis, to verify that agreed phase-out targets have been achieved and all planned activities have been undertaken. The Bank also conducts annual, independent verification of all sector activities. These two reports are critical to confirm that phase-out objectives have been achieved.

Quota system – A tradable production quota system has been developed for sector plans involving ODS production sectors (CFC, halon, and CTC), by which production quotas are issued, annually, to ODS producers. Only established producers are entitled to production quotas, and therefore the system has effectively prevented the entry of new producers to the various sectors. The tradable nature of the system makes it possible for producers to trade quotas among themselves, allowing for some flexibility in the event of over-production by any particular producer. Production quotas will be reduced to zero by 2009, when further ODS production will not be permitted.

Bidding system – A bidding system has been set up in conjunction with production quotas, through which ODS producers are encouraged to sell their quotas (or a fraction of them) to the Government in return for grant funds. Starting prices of unit ODS reductions are set by the Government, and winning bids are those that offer reductions at the lowest costs. This quota buy-back system allows the Government to meet annual production phase-out targets in a cost-effective manner. The system works well when the sector consists of many producers, but is not as effective when the number of producers decreases. Bidding has also been used in some consumption sector projects, such as the MAC sector and the halon fire extinguisher sector.

Sector and industrial restructuring – As part of many industrial conversion projects, enterprises receive new ODS-free equipment, the use of which typically results in reductions in energy consumption and emissions. Modern equipment also contributes to the improvement of product quality, which helps enterprises maintaining market shares. Through plant closures, mergers and various forms of industrial re-structuring, only the most competitive enterprises remain in business, making each particular industrial sector leaner and healthier. A number of sector plan grants have been used to build plants for the production of ODS substitutes. These plants have guaranteed a sufficient supply of ODS alternatives in the local market, which has been instrumental for China to meet its phase-out commitments.

ODS producers self-monitoring – ODS producers designate monitoring representatives within their personnel, who are stationed in competitor’s production plants and maintain independent records of monthly ODS production. Regular rotations among representatives from different producers are enforced. This cross surveillance helps controlling over-production by legally registered ODS producers.

Management – SEPA has implemented the ODS program very successfully. One special feature of the program involves the management structure of the Ozone Unit. The Unit establishes
184,000 ODP tons at completion. Average cost effectiveness of phase-out has reached US$1.87 per kg ODP, significantly lower than that resulting from a project by project approach.

ODS IV has evolved over the years as the main instrument for China to phase out ODS in different production and consumption sectors. It is an unique instrument of the Montreal Protocol that includes features such as performance-based disbursement, performance audits, tradable production quota system, a bidding system, consumption quotas, sector & industrial restructuring, and special project management arrangements in SEPA.

Highlights of ODS Sector Approaches in China – Mobile Air Conditioning (MAC) Sector

Given the rapid growth of its automobile industry, China recognized early—the significance of its potential long-term demand for CFCs, both for servicing of CFC-based MAC systems in existing cars and particularly for the manufacturing of new cars. In 1998 China decided, as a priority, to replace CFC-12 by HFC-134a in MAC systems of all new vehicles produced. The Mobile Air Conditioning (MAC) sector phase-out was implemented in two stages, starting within the framework of ODS III with the conversion of four individual enterprises. A second stage started in 1998 with the development of a sector approach, designed to phase-out all remaining consumption of CFCs by the MAC sector. This sector approach was included in ODS IV.

The MAC sector plan comprised five major elements:

- National policies and regulations, including the ban on new CFC-based MAC systems in all new vehicles by January 1, 2002.
- A technical assistance program for development of standards, setting up testing facilities for MAC components and systems, a new certification system and training for the MAC industry.
Financial assistance to MAC component manufacturers through a bidding mechanism

All vehicle manufacturers were required to change from CFC to HFC-134a-based MAC system by January 1, 2002.

A MAC project team was established for the implementation of the sector plan. A monitoring and reporting system was developed to ensure effective project management and accountability.

The MAC sector plan was completed, as initially scheduled, in January 2002. It was the first sector-wide ODS phase-out plan to be successfully completed under the Multilateral Fund. The phase-out of CFC-based MAC systems from all new vehicles produced in China was achieved at a cost of US$ 7.7 million, which constitutes less than 20% of the overall cost of converting from CFC-12 to HFC-134a.

Industrial and Commercial Refrigeration (ICR) Sector

In 1995 China developed an ODS phase-out program for the Industrial and Commercial Refrigeration sector that included a complete restructuring of the sector. As part of the program, China introduced the necessary regulations and policies to ensure that only non-CFC-based refrigeration equipment would be manufactured after January 2005.

The program consisted of three major components:

- Conversion to HCFC-22-based compressor technology at 24 companies.
- Closure of 49 compressor production lines, as part of a restructuring of the industry.
- Technical assistance program designed to develop new standards, provide guidance on new equipment, and allow modification of testing facilities for new technologies.

The Industrial and Commercial Refrigeration sector plan will ultimately have an impact of over 4900 ODP tons, at a cost of US$49 million. The sector phase-out is being implemented in two stages. The first stage, which was part of ODS III and has been completed, funded the conversion of 19 individual enterprises and one technical assistance project. The second stage, approved by the Multilateral fund in 2002 as a sector plan under ODS IV, will provide support to the remaining five refrigeration companies and will ensure that supporting policies and regulations are put in place.

Since the introduction of the sector program in 1995, the Chinese market has undergone a considerable transition from a controlled to an open market. A significant number of foreign refrigeration companies have now entered the market, mainly through joint partnerships with
Chinese partners. The Industrial and Commercial Refrigeration sector program has acted as a catalyst for the transformation of the market and the conversion to CFC substitute technologies. By January 2003, the sector had phased out nearly 100% of CFCs in new equipment, two years ahead of its target. The early transition of the sector to non-CFC substitutes has significantly reduced current demand for CFCs and will have a major long-term impact on future demand for servicing of existing CFC-based refrigeration equipment.

Domestic Refrigeration Sector

China is the largest global producer of domestic refrigerators. With a total production of approximately 20 million units per year, the continued use of CFC would have had significant impacts on ODS consumption in China and globally. The domestic refrigeration sector conversion has been highly successful. Nearly all domestic refrigerator producers have now converted to non-ODS technologies, having selected HFC-134a as refrigerant and cyclopentane for foam insulation.

China’s vehicle population boom

There are 23 major vehicle manufacturers in China, which produce passenger cars, minibuses, other buses, and trucks. Over the period 1991–2001, total vehicle production rose from about 710,000 to 2.3 million. Passenger cars are in high demand—production rose from around 80,000 to over one million by 2002, with a growth rate of 24% per year. As Chinese urban dwellers’ mode of transport shifts from bicycles and motor-scooters to vehicles, domestic demand has resulted in the rapid growth of the mobile air-conditioning sector. This growth will likely continue due to the enormous potential market for vehicles.

Due to the successful sector phase-out project, non-ODS air conditioners are installed in all new vehicles as of January 1, 2002.

Program impact: without implementation of the CFC phase-out in the mobile air conditioning sector, consumption in this sector would probably have reached an estimated 20,000 ODP tons by 2010.
Sector conversion was addressed by a large number of individual projects, some implemented by the World Bank and others by UNDP and UNIDO. In addition, China has been working closely with bilateral donors, especially Germany, to convert to a truly non-ODS hydrocarbon technology for manufacturing of foam insulation.

Aerosol Sector
In line with global efforts, China addressed the phase-out of CFC consumption in the aerosol sector at a very early stage of its ODS program. By 1993, China had already banned the use of CFC for aerosol production in non-pharmaceutical applications. One of the factors that facilitated early conversion of the aerosol industry was the availability of lower costs substitutes, namely hydrocarbons.

The majority of the aerosol industry converted to hydrocarbons at its own cost, motivated by regulations (i.e. bans) and by the lower costs of hydrocarbons as compared to CFCs.

Nonetheless, three centralized hydrocarbon filling centers were financed by the Multilateral Fund under the ODS III project and are currently in operation. The main objective of the filling centers was to address the smaller aerosol fillers that could not afford to invest in safe hydrocarbon installations. One final project in this sector is currently being implemented, consisting of a technical assistance program for the development and enforcement of aerosol standards and an additional filling center.

Polyurethane Foam Sector
The polyurethane foam sector is the largest ODS consuming sector in China, with an overall consumption of more than 19,162 ODP tons in 1999. Conversion of over 100 individual companies to non-ODS technologies has been funded by the MLF at a cost of over US$ 130 million. While most of the projects have been implemented with assistance from the World Bank, many projects, particularly in the foam sub-sector, have been implemented by UNDP and UNIDO.

By 2001, as many as 500 small and medium-size companies were still producing CFC-based polyurethane foam in China. The project by project approach was thus not a viable option for ODS phase-out in this sector, which led China and the World Bank to develop a sector plan that addressed all remaining CFC consumption. The Multilateral Fund approved US$ 54 million in funding for the foam sector plan.

Meeting the reduction targets specified by this plan is considerably challenging given the number of small enterprises involved.
Innovative approaches including industrial restructuring have been developed to speed up progress, and priority for funding has been given to companies that are willing to provide co-financing. SEPA is currently investigating the possibility of implementing an accelerated phase-out schedule. As is the case with all sector plans, supporting technical assistance programs are essential to the success of the approach.

Halon Production and Consumption Sectors

In 1997, China entered into an agreement with the Multilateral Fund for a complete phase-out of production and consumption of halons for fire protection applications. This was the first sector plan reviewed and approved by the Multilateral Fund. Total resources approved amounted to US$ 62 million, with an expected impact of 41,000 ODP tons and 35,000 ODP tons of production and consumption sectors, respectively. China agreed to close down and to dismantle more than 12 halon production facilities, and to close or to convert over 80 fire equipment manufacturing companies. The project will lead to the closure of all halon 1211 production by December 2005, four years ahead of the Montreal Protocol schedule, and to the closure of all halon 1301 production by 2009.

An essential part of the halon phase-out plan was to ensure that fire safety was not compromised, and therefore the introduction of halon substitutes was an essential component. Under the program, China has supported the introduction of halon alternatives like ABC powder, Honsen foam, and CO2 cylinder production. In addition, some halon producers have started producing halon-like substitutes such as HFC-227ea.

A sustainable phase-out of halons has been achieved in China through a combination of: i) new policies and regulations; ii) financial incentives to halon producers through quota systems and bidding programs; iii) monitoring and reporting procedures; and iv) technical assistance activities to support the safe introduction of Polyurethane foam warehouse
alternatives and substitutes. Based on the latest production information, it is likely that China will phase-out production of halon 1031 well ahead of its agreed schedule.

Process Agent Sector
The latest sector plan approved and funded by the Multilateral Fund is the CTC and process agent sector plan. The aim of this plan is to eliminate the consumption of CTC and CFC-113 used as process agent in the pharmaceutical, chlorinated rubber, chlorinated paraffin, and pesticide industries. Over 100 process agent companies were surveyed as part of the development of the sector plan. While a general ban on the use of ODS in the solvent process agent sector will be issued and enforced over the next two years, the funding received will support the closure of many companies and the consolidation of others, leaving only a few larger producers in the market.

A major issue for the conversion of the industry has been the access to new non-ODS technologies. China depends on limited local technologies, which might have a short-term impact on the market, especially in the ability to compete with foreign producers with proven substitutes.

CFC Production Sector
With a total CFC production capacity of over 80,000 ODP tons, an actual production of almost 60,000 ODP tons and rapidly growing production trends, addressing the phase-out of CFC production in China was seen as a priority by the Multilateral Fund and China in 2000. With the assistance of the World Bank, SEPA and the chemical industry developed a CFC production phase-out strategy, which was approved by the Fund and granted US$ 150 million. The sector plan was designed to help China close 36 CFC producing facilities and eliminate all CFC production over a ten-year period. Supporting policies and regulations have proven to be critical to the success of the phase-out plan. Other tools that were incorporated in the plan include quota sys-
tems and reporting requirements similar to those developed for the halon sector phase-out plan. By January 2003, CFC production in China had been reduced by 40% and 32 production plants had been closed and dismantled. The availability of substitutes has also been of paramount importance to the success of this phase-out plan. China and its chemical industry have actively pursued the development of CFC substitutes. Under the sector plan, a production capacity of 5,000 tons of HFC-134a has been co-financed, primarily to supply refrigerant for the MAC market. Moreover, many of the larger fluoro-chemical producers have developed pilot plants for substitutes and some are already producing HCFCs and HFCs.

Phasing out CFC production has been challenging. With a remaining significant global demand for CFCs at lower costs than substitutes, the risk of illegal produc-
tion is a major challenge, which both SEPA and legal CFC producers are addressing together. On-site monitoring of production facilities, as well as continuous monitoring of the CFC market, are a few examples of actions taken by to successfully implement the CFC sector plan.

CTC Production Sector

Phasing out the CTC production sector is one of the most challenging tasks under the Montreal Protocol, since most CTC available is an involuntarily co-product of the synthesis of other chemicals such as perchloroethylene. Since the demand for some of the co-products is on the rise, chemical producers are faced with difficult choices. Moreover, given that the use of CTC as feedstock for CFC production is dwindling, CTC producers are being put under pressure to find new applications that are not harmful to the ozone layer, such as feedstock for new chemicals. The production of CTC is thus a long-term issue that will constitute a struggle to Parties of the Protocol.

China has received US$ 62 million from the Multilateral Fund to reduce its production of CTC over the next eight years, maintaining only its production for critical applications and what will be needed during the conversion of current CTC users to new alternatives. There are currently eight producers of CTC in China, five of which will close their operations within the next two years, such that China meets its 85% reduction target by 2005. The remaining three producers will reduce their CTC output to a minimum and will find ways to dispose of their surplus in environmentally safe manners. The program is in its initial phase, but China has already addressed one of the key problems, namely CTC co-production by a new joint venture plant.

Supporting policies and regulations, as well as the availability of ODS substitutes, are two critical components of the success of a sector phase-out approach.

China’s Industrial Park

As long as ODS phase-out targets are reached timely, Article 5 countries are entitled to use part of the resources received for the implementation of national phase-out plans to support local production of ODS substitutes and to build institutional capacity. This flexibility in the use of funds has resulted in the establishment of China’s Industrial Park, which is being built with the purpose of providing a friendly environment for the development of ODS alternatives. The Park was conceived in an effort to prevent illegal production, consumption and trade of ODS and it will become the largest site for the production of ODS substitutes.
China’s Next Steps

China has already taken major steps to protect the ozone layer by successfully meeting its Montreal Protocol commitments to freeze production and consumption of ODS, and by its active engagement in ongoing programs to eliminate ODS.

The following steps planned by the Government of China, and supported by the Montreal Protocol program, will ensure continued compliance with Protocol obligations.

- New policies and regulations related to control of ODS will include:
 - an import licensing system with permits and quotas;
 - an export registration and reporting system; and
 - quality control for ODS substitutes.
New monitoring and enforcement tools to manage ODS will include:

- a comprehensive management information system to monitor the overall process of ODS phase-out;
- a data management system for production, consumption, import, and export of ODS;
- inspections and audits of enterprises; and
- penalties for illegal activity.

Development of CFC recycling and domestic production of ODS substitutes will focus on:

- an adequate supply of commercialized substitutes for halon;
- increased production capacity for HFC-134a as a CFC substitute; and
- increased CFC-12 recycling capacity to meet servicing needs in refrigeration and air conditioning.

Completion of current ongoing ODS phase-out, including:

- implementation of new sector plans, such as Process Agents/Carbon Tetrachloride Plan, and
- implementation of the National CFC Phase-out Strategy, which contains national and sector plans, needs to continue over the

Country Compliance Center

China realizes that the future major reductions in ODS consumption and production that are required by the Montreal Protocol will require rigorous compliance and enforcement measures. It is especially important to prevent illegal activities, because CFCs are not difficult to manufacture. Therefore, China is planning to establish the Country Compliance Center as soon as program arrangements can be made legally operational.

The Country Compliance Center will be the central management unit for all ODS programs, and will be responsible for all management and enforcement. This would include, for example, implementation of ODS phase-out, control of ODS import and export, quality control of ODS substitutes, production permit and quota systems, and monitoring, inspections, and audits.

China is well on track to meet its Montreal Protocol targets. The sector approach is a major contributor to success—after completion of the current projects in 2010, approximately 285,000 ODP tons will be eliminated.
next years to meet final phase-out targets in the Protocol compliance period.

- Reduction and phase-out of methyl bromide, which must be eliminated by 2015 now that China has ratified the Copenhagen Amendment.

The Bank’s Future Focus

The Bank’s Montreal Protocol program will continue to play a key role in supporting China’s implementation of its future steps required for total ODS phase-out.

Methyl bromide alternatives

The China Montreal Protocol program supports screening of alternatives to methyl bromide, as a special initiative under the CFC Production Sector Plan. Methyl bromide is used as a soil fumigant to control agricultural pests and weeds. Because it has a high ozone-depletion potential, methyl bromide is controlled by the 1992 Copenhagen Amendment requiring 20% reduction by 2005 and then total phase-out by 2015. Because China consumed 1,598 ODP tons of methyl bromide in 1999, and recently ratified the Copenhagen Amendment, its use has become an issue. Economical, simple, and effective alternatives to methyl bromide are being sought for tobacco, strawberry, cucumber, and hot pepper crops.

Rural people are especially vulnerable to ozone depletion

Much of China’s labor force is involved in agriculture. There are 329 million Chinese farmers. The amount of time they spend outdoors increases their exposure time to sunlight and makes them vulnerable to increased ultraviolet-B radiation resulting from ozone depletion. People working at higher altitudes in China’s mountainous regions are also at greater risk.
On a broader plane, the Bank’s task is how to increase effectiveness in addressing future priorities with country partners. The Bank has already laid out the blueprint in its Environment Strategy, and is moving to examine how it can simplify its coordination structure and procedures so that Montreal Protocol activities, as well as activities related to international conventions on climate change, persistent organic pollutants, and other human-induced chemical changes, can be mainstreamed into development assistance projects. Mainstreaming activities could involve integration into the Country Assistance Strategy, functional links to development loan projects, and coordination in project processing.

By drawing on the vast fund of experience and resources contained in the organization and its partners, the Bank can cross-fertilize its programs to address the challenges of other critical global environmental issues. Its role as an implementing agency of the Montreal Protocol Multilateral Fund and the Global Environment Facility can serve as
a precedent and a successful model. For example, the Montreal Protocol Operations Unit has more than a decade of experience with implementation of an international agreement on a critical global environmental issue. Some of the key factors in this successful implementation experience are partnership, national execution, flexibility, and innovation.

The World Bank is uniquely positioned to help catalyze changes in partner country environment policy and practice that will not only safeguard the ozone layer, but help to stem climate change, loss of biodiversity, deforestation, and land and water degradation. By meeting this challenge, the Bank can make a tremendous contribution toward poverty alleviation and sustainable development.

Country Assistance Strategy for China

The Country Assistance Strategy (CAS) is the focal instrument in the World Bank’s dialogue with partner countries in development assistance. It describes the agreement reached between the Bank and a country government on priorities for Bank development assistance over the next 3 years. The CAS is influenced by policy dialogue, country economic and sector work, supporting analytical work, the Bank’s policies, and project design and financing.

One of the three main themes of the Bank’s operational strategy in China is to facilitate an environmentally sustainable development process. As part of the forthcoming CAS, the Bank will help China strengthen environmental institutions; improve air quality; manage land, water, and natural resources; and protect the global environmental commons. The Bank is planning an intensive level of support through policy work and investment lending in natural resource management; watershed rehabilitation and wastewater treatment; renewable energy and energy efficiency; biodiversity conservation and restoration; and global environment projects supported by the Montreal Protocol.

The 65,000 ODP tons of ODS phased out under the China Montreal Protocol program by the end of 2002 far exceeded the combined performance of all other signatories to the Montreal Protocol.

The China Montreal Protocol program is the biggest in the world. The CAS notes that in protecting the global commons, the Montreal Protocol program has made significant contributions to addressing global environmental issues in China.

Further Information

For additional information on the World Bank’s role as an implementing agency of the Montreal Protocol, consult the following website:

www.worldbank.org/montrealprotocol