Renewable Energy Auctions: the Brazilian Experience

Luiz Barroso
luiz@psr-inc.com

January 2012
Brazil has one of the “cleanest” energy matrices in the world, with about 45% of the overall energy production coming from renewable sources

- The worldwide average is about 15%

The power sector is even “greener” – more precisely, “bluer” – with 80% of the country’s 120,000 MW installed capacity coming from hydropower

- Large plants in cascade over different basins
- Large reservoirs
- Hydropower is an essential resource for the country
The new renewable energy sources (RES)

► In the past five years, three other renewable resources have become competitive for large-scale generation expansion:

1. Bioelectricity (BE): cogeneration from sugarcane bagasse
2. Small hydro
3. Wind power

► Hundreds of BE, SH and wind plants, totaling 6,000 MW, are already in operation; an additional 7,000 MW is under construction

► And they have other interesting attributes
Interesting attributes of RES

- Brazil has a significant resource potential of these sources
- Geographical complementarity: wind (South and NE) & BE (SE)
- Smaller-sized projects: diversify risks of delay, increases investors range
- Shorter construction time: hedges load growth uncertainty
- Location close to load centers
- Brazil’s hydro reservoirs and the countrywide transmission grid provide flexibility and modulate seasonal and intermittent production
- Production complementarity with hydro:
 - Hydro and wind (in the Northeast)
 - Hydro and bioelectricity (in the Southeast)
Brazil has different support mechanisms, which co-exist:

2. (from 2007) Incentives on wire costs for selling energy contracts at the free market
3. (from 2007) Technology-specific auctions

- Tax breaks & local (BNDES) incentivized financing offered
- The main support mechanisms are (1) and (3) and they will be discussed next
Created in 2002, mandatory contracting of 3,300 MW of RES until Dec 2006 through a 20-year contract

- 1,100 MW for wind, small hydro and biomass
- Cost of these contracts collected from all consumers through a levy
- Consumers entitled to portions of Proinfa energy (in proportion to actual consumption) in their contract portfolios.
- Eletrobras (federal power utility) centralizes payments.

“FiT-like” program: each technology receives a fixed price

- Wind: 184 USD/MWh, SH: 96 USD/MWh, Bio: 70 USD/MWh

Proinfa started the RES business in Brazil
Difficulties with Proinfra

- Economic value: information asymmetry between suppliers & government
- Criterion to select projects: date of the project’s environmental permit
 - The older the permit, more priority the project had in the merit order for contracting → “black market” for environmental licenses.
- Difficulties to manage grid connection
- BNDES required 60% of the project’s costs to be supplied by local manufacturers: deadlock for wind, as Brazil had only 1 supplier at the time
- Proinfra’s implementation delayed several times; still not fully completed and completion postponed for the 6th time now to 2012
The path towards RES auctions

- Contract auctions are integrated into the regulatory framework since 2004
 - Brazil runs an organized market to auction *firm energy* contracts to contract new energy for the regulated market (regulated consumers pay) or specific auctions to contract *supplementary* generation to increase the security of supply (all consumers pay)
 - Original motivation was price disclosure and efficiency in the procurement process (reduction of information asymmetry)
- Since 2005, these auctions have resulted in the contracting of 31 GW of new capacity
 - 40% is conventional hydro & 20% renewable (60% renewable in total)
 - 40% is fossil-fueled, mostly natural gas
 - US$ 300 billion in contracts
The organized contract auctions for new capacity

 ► Regular (yearly) auctions exclusive for new energy
 ▪ Discos declare the volumes to contract (regulated consumers pay) and a centralized procurement (economies of scale) is organized by the government
 ▪ Standardized long-term energy contracts offered, backed by firm energy
 ▪ Technology-neutral but the government can interfere in the candidate projects with policy decisions:
 • has been used to organize project-specific auctions (e.g. large hydros), to avoid oil- and coal-fired generation as candidate supply and to contract renewable

 ► “Reserve energy” auctions
 ▪ Contract supplementary energy to increase the system's security of supply
 ▪ Government defines the volumes to contract, all consumers pay for the energy
 ▪ Government can select the technologies that will participate, has been used to contract renewable
Outlook of the RES energy auctions

► Long-list of technical pre-requisites to register a project, e.g.:
 ▪ Prior environmental license, grid access, financial qualifications

► Specific products offered
 ▪ In case of wind, product converges to a FiT with some revenue stabilization and a complex scheme for penalties/incentives for production above/below a threshold

► Main auction tasks distributed among the institutions (an auction committee is formed) to allow coordination:
 ▪ Definition of auction mechanism & suggest price caps
 ▪ Definition of auction product, preparation of tender documents, etc
 ▪ Coordination with transmission planning
How to guarantee the projects will be build?

- Guarantees for new energy auctions: bid bond (1% of project’s estimated investment cost) & project completion (5% of project’s estimated investment cost)

- Regulator has the right to ask for contract termination if delay higher than 1 year is observed

- Several other penalties in case of delays
 - Reduction of contract price while plant is delayed
 - Depending on the auction type, it is needed to contract replacement firm energy during the delayed period
Technology-specific auctions results – wind power

PROINFA was the first RES support mechanism in the country and based on a feed-in tariff (administratively set)

* Wind competed against small hydro and biomass

** Wind competed against small hydro, biomass and gas-fired plants

Total of 6.8 GW of wind contracted in auctions @ 78 US$/MWh
2.9 GW @ for 60 US$/MWh (2011)
Problems observed and ongoing adjustments

► Some 40% of the wind projects of the 2009 auction are behind schedule (COD should be July 2011). Why?

► Delays in financing: BNDES is concerned about the financial situation of one contracting distco and requires higher guarantees
 ▪ This distco is one of the few remaining under state control (Amapá). It will probably suffer federal intervention for later privatization
 ▪ Affects smaller investors with less proven track records

► Delays in environmental licensing
 ▪ Lack of experience of investors (incomplete environmental studies) and lack of personnel from the environmental licensing agency
Main lessons

► Auctions do not operate in a vacuum: they must be an integral part of a country’s overall energy and procurement policies

► An effective auction depends on the existence of competition: attracting additional bidders are far more effective than limiting reserve prices

► Regulatory stability, transparency and the investors’ perception about the fairness of the process are pre-conditions for the success of an auction

► The product offered will depend on the auction objective and is a key of the auction success (risk allocation is everything)

► Stimulus for “early warnings” of problems & delays in project implementation should be so that the “bad news” can be known in advance

► There is no “one size fits all” type of auction design and the “devil is in the details”
For further reading*

5. F. Porrua ; B. Bezerra; L.A. Barroso; P. Lino; F. Ralston; M.V. Pereira, ,"Wind Power Insertion through Energy Auctions in Brazil" IEEE General Meeting, 25-29 July 2010, Minneapolis, Minnesota, US

* available at www.psr-inc.com
Backup
Lessons learned: auctions (1/2)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Main Lessons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Auction-related Procurement and Energy Policy Aspects</td>
<td>Auctions do not operate in a vacuum: rather they must be an integral part of a country’s overall energy and procurement policies</td>
</tr>
<tr>
<td>2. Market Context</td>
<td>An effective auction depends on the existence of competition: it is widely accepted among practitioners that the results of attracting additional bidders are far more effective than limiting the reserve prices</td>
</tr>
</tbody>
</table>
| 3. Pre-conditions | **Regulatory stability is a key element** to attract investors to participate in competitive auctions
Transparency and the investors’ perception about the fairness of the process is a pre-condition for the success of an auction |
<table>
<thead>
<tr>
<th>Topic</th>
<th>Main Lessons</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. General Design Issues</td>
<td>There is no “one size fits all” type of auction design

The product offered in an electricity auction will depend on the auction objective and is a key of the auction success (risk allocation is everything)

Centralized auctions seem to be more efficient in fostering competition compared to carrying out various smaller auctions</td>
</tr>
<tr>
<td>5. Technology Choice and Renewables</td>
<td>Auctions have proved to be an alternative to the administratively set feed-in tariffs: indirect way for feed-in tariff price discovering but managing to reach the right amount of investment

Moving from auction theory to real-life implementation is not an easy task, special care should be taken in markets that are not fully functional, or where institutions are not strong enough to support any formal competitive electricity auction procurement schemes</td>
</tr>
<tr>
<td>6. Implementation issues</td>
<td>Governments have to specify who should be allowed to participate in the auctions among all potential buyers and sellers in the market

Stimulus for “early warnings” of problems & delays should be given so that the “bad news” can be known in advance

The “devil is in the details” – well-specified auction rules are critical for the auction success</td>
</tr>
</tbody>
</table>
Tax breaks

- Waiver of taxes on equipment imports
- Special financing lines:
 - 70% leverage, 14 to 16-years amortization, 6-9% interest rate, 6-month grace period
Discount on T and D tariffs

- Up to 50% discount on transmission and distribution tariffs for free consumers who buy contracts backed up by renewable.

 1. Energy cost: 50 USD/MWh
 2. Wire cost: 80 USD/MWh
 3. Tariff (1+2): 130 USD/MWh

- A discount of 50% is 0.5 x 80 USD/MWh = 40 USD/MWh → an energy price of 80 USD/MWh could be offered for a renewable and would save 10 USD/MWh in the final tariff:

 1. Energy cost: 80 USD/MWh
 2. Wire cost: 40 USD/MWh
 3. Tariff (1+2): 120 USD/MWh