IMPACT EVALUATION: INSTRUMENTAL VARIABLE METHOD

SHAHID KHANDKER
World Bank
June 2006
The main objective of Impact Evaluation......

• To estimate the treatment effect of an intervention T on an outcome Y

• For example:
 – What is the effect of an increase in the minimum wage on employment?
 – What is the effect of a school feeding program on learning outcomes?
 – What is the effect of a training program on employment and earnings?
 – What is the effect of micro-finance participation on consumption and employment?
The Counterfactual

Recall the evaluator’s key question is:

What would have happened to the beneficiaries if the program had not existed?

How do you rewrite history? How do you get baseline data?
In theory, a single observation is not enough.

Extreme care must be taken when selecting the control group to ensure comparability.

The Ideal strategy

With equivalent control group.
Problem with ideal strategy is:

It is extremely difficult to assemble an exactly comparable control group:

- Ethical problem (to condemn a group to not being beneficiaries)
- Difficulties associated with finding an equivalent group outside the project
- Costs
- People change behaviour over time

Therefore, this approach is practically difficult
Examples of *less than ideal* strategies...

- Comparing individuals before and after the intervention
- Comparing individuals that participated in the intervention to those that did not

- Example of a micro-credit program
 - Often targeted – not everyone is eligible
 - Some individuals chose to participate and some don’t even among the eligible households/individuals
 - Why can’t we estimate the program’s impact by comparing outcomes of participants to non-participants?
Example with less than ideal strategies such as using a before/after comparison

Findings on the impact are inconclusive

Effect or impact?

Income level

Base Line Study

Time series

Time

Beneficiaries

Program

Broad descriptive survey
Comparison with non-equivalent control group

Effect or impact = 13

Projection for beneficiaries if no policy

Data on before and after situations is needed.

Comparison with non-equivalent control group

Effect or impact = 13

Projection for beneficiaries if no policy

Data on before and after situations is needed.
Micro-credit program

- Participation is a choice variable ➔ endogenous
- Observed and unobserved characteristics about participants that make them different from those who did not participate
 - Omitted variables – can control for many observed characteristics, but are still missing things that are hard or impossible to measure
 - Our treatment effect is “picking up” the effect of other characteristics that explain treatment, resulting in a biased estimate of the treatment effect
Micro-credit program

• Estimation: compare outcomes of individuals that chose to participate to those who did not:

\[y = \alpha + \beta_1 T + \beta_2 x + \varepsilon \]

Where \(T = 1 \) if enrolled in program
\(T = 0 \) if not enrolled in program
\(x = \) exogenous regressors (i.e. controls)

• The problem:
 – \(\text{Corr} (T, \varepsilon) \neq 0 \)
Micro-credit Program

• Examples of why Corr \((T, \varepsilon) \neq 0\)
 • Different motivation
 • Different ability
 • Different information
 • Different opportunity cost of participating
 • Different level of access

• There are characteristics of the treated that should be in \(\varepsilon\), but are being “picked up” by \(T\).

• We have violated one of the key assumptions of OLS: Independence of regressors \(x\) from disturbance term \(\varepsilon\)
What can we do about this problem?

• Try to “clean up” the correlation between T and ε:
• Isolate the variation in T that is uncorrelated with ε
• To do this, we need to find an instrumental variable (IV)
• OR, design programs with instrumental variables in mind
Basic idea behind IV

• Find a variable Z which satisfies two conditions:
 1. Correlated with T: $\text{corr}(Z, T) \neq 0$
 2. Uncorrelated with ε: $\text{corr}(Z, \varepsilon) = 0$

• Examples of Z in the micro-credit program example?
 – interest rate or the price of credit
Two Stage Least Squares (2SLS)

\[y = \alpha + \beta_1 T + \beta_2 x + \varepsilon \]

- Stage 1: Regress endogenous variable on the IV (Z) and other exogenous regressors

\[T = \delta_0 + \delta_1 x + \theta_1 Z + \tau \]

- Calculate predicted value for each observation: \(T \hat{\text{hat}} \)
Two stage Least Squares (2SLS)

- Stage 2: Regress outcome y on predicted variable (and other exogenous variables)

$$\hat{y} = \alpha + \beta_1(T) + \beta_2x + \epsilon$$

- Need to correct Standard Errors (they are based on \hat{T} rather than T)

- In practice just use STATA - ivreg

- Intuition: T has been “cleaned” of its correlation with ϵ.
Two stage Least Squares (2SLS)

• Another way of presenting the same result

\[\beta_1 = \frac{\text{Cov}(y,z|X)}{\text{Cov}(T,z)} \]

• Cov(y,z) is called “The Reduced Form”

• Cov(T,z) is called “The First Stage”
Example: Grameen Bank impact

- C is credit demand;
- Y is outcome variable (consumption, assets, employment, schooling, family planning);
- Subscripts: household i; village j; male m; female f; time t;
- Want to allow separate effects on outcome of male and female credit;
- X represents individual or household characteristics.
Measuring Impacts: Cross-Sectional data

Credit demand equations:
\[C_{ijm} = X_{ijm}\beta_c + Z_{ijm}\gamma_c + \mu^{cm} + \epsilon^{cijm} \]
\[C_{ijf} = X_{ijf}\beta_c + Z_{ijf}\gamma_c + \mu^{cf} + \epsilon^{cijf} \]

Outcome equation:
\[Y_{ij} = X_{ij}\beta_y + C_{ijm}\delta_m + C_{ijf}\delta_f + \mu^y + \epsilon^y_{ij} \]

Note: the Z represent variables assumed to affect credit demand but to have no direct effect on the outcome.
Endogeneity Issues

- Correlation among μ_{jm}^c, μ_{jf}^c and μ_y, and among ϵ_{ijm}^c, ϵ_{ijf}^c and ϵ_y
- Estimation that ignores these correlations have endogeneity bias.
- Endogeneity arises from three sources:
 1) Non-random placement of credit programs;
 2) Unmeasured village attributes that affect both program credit demand and household outcomes;
 3) Unmeasured household attributes that affect both program credit demand and household outcomes.
Resolving endogeneity

- Village-level endogeneity – resolved by village FE;
- Household-level endogeneity – resolved by instrumental variables (IV);
- In credit demand equation Z_{ijm} and Z_{ijf} represent instrumental variables;
- Selecting Z_{ij} variables is difficult;
 Possible solution: identification using quasi-experimental survey design.
Quasi-experimental survey design

- Households are sampled from program and non-program villages;
- Both eligible and non-eligible households are sampled from both types of villages;
- Both participants and non-participants are sampled from eligible households.

Identification conditions:
- Exogenous land-holding;
- Gender-based program design.
Instruments for identification

• **Exogenous land-holding criteria:**
 - Only households owning up to 0.5 acre of land qualify for program participation. In practice there is some deviation from this cutoff.

• **Gender-based program participation criteria:**
 - Male members of qualifying households cannot participate in program if village does not have a male program group.
 - Female members of qualifying households cannot participate in program if village does not have a female program group.
Construction of Z_{ij} variables

Male choice $= 1$ if household has up to 0.5 acre of land and village has male credit group
= 0 otherwise
Female choice $= 1$ if household has up to 0.5 acre of land and village has female credit group
= 0 otherwise
Male and female choice variables are interacted with household characteristics to form Z_{ij} Variables.
What this means…..

Intuitively, the outcome regression now relates variation in \(Y \) to variation in \(C \) associated with variation in \(Z \).
Table 1: Weighted Mean and Standard Deviations of Dependent Variables

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of program loans of females (Taka)</td>
<td>5498.854</td>
<td>779</td>
<td></td>
<td>326</td>
<td>2604.454</td>
<td>1105</td>
<td>-</td>
<td>-</td>
<td>2604.454</td>
<td>1105</td>
</tr>
<tr>
<td>Sum of program loans by males (Taka)</td>
<td>3691.993</td>
<td>631</td>
<td></td>
<td>263</td>
<td>1729.631</td>
<td>894</td>
<td>-</td>
<td>-</td>
<td>1729.631</td>
<td>895</td>
</tr>
<tr>
<td>Per capita HH weekly food expenditure (Taka)</td>
<td>59.166</td>
<td>2696</td>
<td>62.265</td>
<td>1650</td>
<td>61.242</td>
<td>4326</td>
<td>61.985</td>
<td>872</td>
<td>61.366</td>
<td>5218</td>
</tr>
<tr>
<td>Per capita HH weekly non-food expenditure (Taka)</td>
<td>17.848</td>
<td>2696</td>
<td>23.621</td>
<td>1650</td>
<td>21.716</td>
<td>4346</td>
<td>27.676</td>
<td>872</td>
<td>22.706</td>
<td>5218</td>
</tr>
<tr>
<td>Per capita HH total weekly expenditure (Taka)</td>
<td>77.014</td>
<td>2696</td>
<td>85.886</td>
<td>1650</td>
<td>82.959</td>
<td>4346</td>
<td>89.661</td>
<td>872</td>
<td>84.072</td>
<td>5218</td>
</tr>
</tbody>
</table>
Tables 2: Alternate Estimates of the Impact of Credit on Per Capita Expenditure

<table>
<thead>
<tr>
<th>Explanatory Variables</th>
<th>Total</th>
<th>Food</th>
<th>Non-food</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Naive weighted (OLS)</td>
<td>Log Total Expenditure per Capita</td>
<td>Naive weighted (OLS)</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>IV-FE</td>
<td>IV</td>
</tr>
<tr>
<td>Amount borrowed by females from GB</td>
<td>.004 (1.765)</td>
<td>.0317 (2.174)</td>
<td>.0432 (4.249)</td>
</tr>
<tr>
<td>Amount borrowed by males from GB</td>
<td>.001 (.325)</td>
<td>-.0225 (-2.291)</td>
<td>.0179 (1.431)</td>
</tr>
</tbody>
</table>
Alternative Models for Estimation

(--) Ordinary Least Squares (OLS) estimation of outcome equation with no correction for weights;
(-) OLS on outcome equation with correction for sampling weights;
(+) IV (2-stage) estimation of outcome equation with weights correction;
(++) IV, weights, village fixed effects.
Table 3. Comparing Results among Alternative Models: Log-log impacts of GB women’s credit on HH per capita consumption

<table>
<thead>
<tr>
<th>Models</th>
<th>Coefficient (t-stat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un-weighted OLS</td>
<td>0.003 (1.400)</td>
</tr>
<tr>
<td>Weighted OLS</td>
<td>0.004 (1.765)</td>
</tr>
<tr>
<td>Weighted IV</td>
<td>0.0371 (2.174)</td>
</tr>
<tr>
<td>Weighted IV, village FE</td>
<td>0.0432 (4.249)</td>
</tr>
</tbody>
</table>
Conclusions

• Participants are observed to consume less on average than counterpart non-participants – does this mean program does not matter?

• Econometric estimation shows participation has indeed caused some 18 percent return to consumption for female and 11 percent for male borrowing

• IV-FE > IV > OLS
IV’s in Program Evaluation

- Very hard to find appropriate instrumental variables \textit{ex post}
- Can \textit{build} IVs into design of program

- Two Cases:
 - Problematic Randomization
 - Randomization not feasible despite best attempts
IV’s in Program Evaluation

• Problematic Randomization
• Two Groups: Treatment (T=1) and Control (T = 0)
• Noticed
 – Some people in T=1 did not get the treatment!
 – Some people in T=0 did get the treatment
• So, people who received the treatment (RT for Received Treatment) is different from people chosen: RT ≠ T
• Don’t throw up hands in despair!
 – T is a valid IV for RT
IV’s in Program Evaluation

• Randomization not feasible
• Working with NGO to evaluate new program
• Suggest quasi-experimental program design
• NGO to require to follow eligibility criteria based on observables such as landholding, gender, poverty, etc
• Construct two-groups: Z=1 and Z=0
• Let NGO choose treated households
 – BUT ensure more treatment samples in Z=1 than Z=0
• Use Z as instrumental variable
Recall classic assumption of OLS

• Assuming we can find valid IVs, we can overcome endogeneity (X is a choice variable correlated with the error):
 – Simultaneity: X and Y cause each other
 – Omitted Variables: X is picking up the effect of other variables
 – Measurement Error: X is not measured precisely
Caution....

• Bad instruments: if corr \((Z, \varepsilon) \neq 0\), we are in trouble!
 – we must ensure that corr \((Z, \varepsilon) = 0\)
 – this is not always easy! We use theory and common sense