Life Cycle Cost Of Selecting Chiller Equipment:

Manufacturer’s Viewpoint

Daryl Showalter
Chiller Applications Manager
McQuay International
Equipment

- Using Different Kinds Of Equipment Or Different Performance Equipment Can Improve Cost

- Difficult Part Is To Evaluate Life Cycle Analysis
Air Cooled Vs. Water Cooled

- Water Cooled Will Be More Energy Efficient
- It Usually Costs Less To Operate
 - Maintenance And Water Costs
- For Optimization Go Water Cooled
Water Cooled - Optimizing Selections

- Enter Design Data Into The Program
 - Start The Process
 - Choose The Chiller After A Large Vertical Drop
 - Look At The Number Of Selections And Prioritize
 - Analyze Options

![Diagram showing cost analysis with 'Not Good' and 'Good Selection' annotations.]
Review Components

Selecting The Chiller Look At:

- Vessel Length Changes
- Vessel Diameter Changes
- Vessel Tube Count
- Compressor / Gear Selection-If Appropriate
- Motor Size
- Number Of Passes
Conditions Of Service:

- Use Lower Entering Condenser Water Temp
- Use Higher Leaving Chilled Water Temp
- 1/2 Degree Anywhere Makes a BIG Difference!!
- MINIMIZE LIFT
Range Vs. Supply Water Temperature

- Declining Supply Water Temperature (44 To 38F)
- Increase Chilled Water Range From 10 To 24F
- Annual Energy Analysis

<table>
<thead>
<tr>
<th>Run</th>
<th>C.W. Range (°F)</th>
<th>C.W. S.T. (°F)</th>
<th>Chiller ($/yr)</th>
<th>Pumps ($/yr)</th>
<th>Tower Fan ($/yr)</th>
<th>S.A. Fan ($/yr)</th>
<th>Total ($/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>44</td>
<td>26,074</td>
<td>15,175</td>
<td>1,591</td>
<td>28,275</td>
<td>71,115</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>44</td>
<td>26,096</td>
<td>13,784</td>
<td>1,593</td>
<td>28,560</td>
<td>70,033</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>44</td>
<td>26,211</td>
<td>12,055</td>
<td>1,597</td>
<td>29,350</td>
<td>69,213</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>42</td>
<td>27,733</td>
<td>12,790</td>
<td>1,593</td>
<td>28,573</td>
<td>70,689</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>42</td>
<td>27,779</td>
<td>12,039</td>
<td>1,593</td>
<td>28,570</td>
<td>69,981</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>40</td>
<td>29,371</td>
<td>11,462</td>
<td>1,594</td>
<td>28,584</td>
<td>71,011</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>40</td>
<td>29,351</td>
<td>11,002</td>
<td>1,596</td>
<td>28,872</td>
<td>70,081</td>
</tr>
<tr>
<td>7</td>
<td>22</td>
<td>38</td>
<td>30,365</td>
<td>10,623</td>
<td>1,596</td>
<td>28,881</td>
<td>71,465</td>
</tr>
</tbody>
</table>
99% Of All Operating Hours Are At Part Load
Part Load Analysis (IPLV)

<table>
<thead>
<tr>
<th>% Load</th>
<th>Old % Hrs</th>
<th>New % Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>75</td>
<td>39</td>
<td>42</td>
</tr>
<tr>
<td>50</td>
<td>33</td>
<td>45</td>
</tr>
<tr>
<td>25</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Systems Solution
Optimizing Selections- Glycol!

- High Glycol = Low Heat Transfer:
 - Propylene Glycol Has Really Bad Heat Transfer Properties – Increases Head On Compressor
 - Utilize Less % Of Glycol - Even 0.5% Can Make A Difference
 - ASHRAE Fundamentals: Physical Properties Of Secondary Coolants

- Don’t Limit Input Values
 - Run Selections Multiple Ways
Vessels

- **High Pressure Drops?**
 - Look At 1 Pass Vessels
 - Look At Reducing Evaporator Or Condenser Length
 - Tube Thickness Can Increase Pressure Drop

- **Conversely - High Temperature Difference?**
 - Look At (3) Pass
 - Look At Series Flow With 1, 2, Or 3 Pass
Optimizing Selections- F.L. Vs. IPLV

- Low NPLV Or IPLV: Look At Multiple Compressor Or VFD
 - Sort By NPLV/IPLV
 - Lowest NPLV Is Not Normally The Lowest Full Load kW/Ton
 - Slight Decrease In Full Load KW/TR Can Dramatically Increase Cost And Actually Increase NPLV/IPLV!
Various 500 Ton Chillers

Notes:
WSC = Single Compressor Centrifugal Chiller
WDC = Dual Compressor Centrifugal Chiller
VFD = Variable Frequency Drive
Multiple Chillers On A Job?
- High Temperature Difference Across The Evaporator?
 - Look At Series / Counterflow Arrangements
 - 1 Multiple Compressor Instead Of 2 Singles
Cooling Tower Considerations

- Oversize Tower To Lower Condenser Water Supply Temperature
- Chiller Stays Same Price, Efficiency Improves 11%
- Tower Capital And Operating Cost Up Slightly
- 3% Annual Savings

<table>
<thead>
<tr>
<th>Run</th>
<th>Cond. W.S.T. (°F)</th>
<th>Chiller kW/Ton</th>
<th>Chiller Pumps ($/yr)</th>
<th>Tower Fan ($/yr)</th>
<th>S.A. Fan ($/yr)</th>
<th>Total ($/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85</td>
<td>0.547</td>
<td>24,435</td>
<td>15,209</td>
<td>1,441</td>
<td>24,512</td>
</tr>
<tr>
<td>2</td>
<td>84</td>
<td>0.535</td>
<td>23,842</td>
<td>15,207</td>
<td>1,463</td>
<td>24,508</td>
</tr>
<tr>
<td>3</td>
<td>83</td>
<td>0.524</td>
<td>23,425</td>
<td>15,205</td>
<td>1,482</td>
<td>24,505</td>
</tr>
<tr>
<td>4</td>
<td>82</td>
<td>0.514</td>
<td>23,055</td>
<td>15,203</td>
<td>1,501</td>
<td>24,502</td>
</tr>
<tr>
<td>5</td>
<td>81</td>
<td>0.492</td>
<td>22,147</td>
<td>15,199</td>
<td>1,526</td>
<td>24,496</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>0.483</td>
<td>21,848</td>
<td>15,197</td>
<td>1,548</td>
<td>24,942</td>
</tr>
</tbody>
</table>
Annual WB In Major US Cities

Strong Candidates For VFD Chillers

Los Angeles, Washington DC, Atlanta, Chicago, Miami
Optimizing Starter Selections

- Try Different Starters
 - Solid State Starters Have Different Size Breaks Than Wye Delta Starters
 - Solid State Starters Are Now Cheaper In Most Cases - Try Both Ways Depending Upon Size Breaks
 - Try Unit Mounted And Free Standing - Size Breaks Can Make Different Selections Appear
 - Check VFD Sizing – Expensive At Very Bottom Of Amp Rating
Variable Flow Vs. Constant Flow

Notice Pump Work
Half Chiller Work!

Pump Work Cut
In Half

- Variable Primary Flow
- 2 Chiller Primary/Secondary Flow
- 2 Chiller Parallel Flow
Wrap-up

- Many Ways To Solve An Application
- Selection Is Only As Good As The Data Given
- Optimize Your Selections