Pension Economics: Basic Concepts and Identities

Tatyana Bogomolova
World Bank
Outline

- Pension system finances: key factors and relationships
- PAYG DB schemes
- Funded DC schemes
- Notional defined contribution plans
- Pension systems: individuals’ perspective
Pension system: main flows

Demography

Contributors → Beneficiaries

Economy

PS revenues ← PS design → PS expenditures

PF balance

Accumulated reserves/debt
Demography:
key demographic factors

- Population, age/gender composition → working age and old age population
- Fertility rates
- Mortality rates → life expectancy, life expectancy at retirement
- Migration flows, age and gender composition
Economy: key economic factors

- Macroeconomy
 - GDP
 - Inflation
 - Interest rates

- Labor market
 - Labor force participation rates
 - Unemployment
 - Wages, earning profile, income distribution
Pension system design: key parameters

- Revenue side
 - coverage
 - exempted
 - contribution rate
 - covered wage (ceilings/floors)

- Expenditure side
 - coverage
 - eligibility criteria (vesting period, retirement age, disability, survivorship)
 - benefit formula
 - indexation rules for post-retirement pensions
PAYG Defined Benefit systems

- Pension contributions are not saved. Instead, workers contributions today is used to pay pensioners today, according to a prescribed (defined benefit) formula. In return, workers gets a promise that they will receive a pension tomorrow, paid for by workers tomorrow.
PAYG DB finances

- Total expenditures \(\text{EXP} = B \times P\)
- Total revenues \(\text{REV} = C \times E\)
- Books are balanced when \(B \times P = C \times E\)

\[\begin{align*}
C & = \text{average contribution} \\
B & = \text{average benefit (pension)} \\
P & = \text{number of pensioners} \\
E & = \text{number of contributors}
\end{align*}\]
PAYG DB finances (cont.)

- Given that:
 \[B = RR \times W; \quad C = W \times CR; \quad \text{and} \quad DR = \frac{P}{E} \]

- The pension fund balance equation can be presented as:
 \[CR = RR \times DR \]

where:

- \(CR \) = contribution rate
- \(RR \) = average replacement rate (relative pension level)
- \(W \) = average wage
- \(DR \) = system dependency rate (the inverse – support ratio)
How to keep the system in balance?

- Adjust contribution rate
- Adjust replacement rate
- Adjust parameters affecting the dependency rate
- Combination of the above
- More direct control of CR and RR; less control over DR
Equilibrium contribution rate

- If replacement rate is fixed (target RR)
- Contribution rate required to finance a given average replacement rate is:
 \[CR = RR \times DR \]
- So if the dependency rate grows the contribution rate has to be increased in order to bring the pension fund into balance
Example: Equilibrium contribution rate

Suppose:
– promised benefit (RR) = 60% wage
– system is new and populations young, DR = 1/8
– so each point of CR yields 8 points RR

Then: required CR = 60/8 = 7.5%

But:
– as population and system age, DR = 1/2
– so each point of CR yields 2 points RR

Then: required CR = 60/2 = 30%
Equilibrium replacement rate

- If contribution rate is fixed
- Another way to balance the system is through the replacement rate → affordable replacement rate is:
 \[RR = \frac{CR}{DR} \]
- So, if the dependency rate grows and the contribution rate remains unchanged the replacement rate has to be reduced in order to keep the system in balance
Average replacement rate depends on:

- Policy choices about target individual replacement rate → Benefit formula
- Policy choices about pension indexation method
- Wages, wage growth rate
Benefit formula: benefit at retirement

- Accrual rate per year of service
- Min/Max replacement rates, min/max pensions
- Measure of income (reference wage, pensionable earning measure)
 - ceiling on pensionable wages
 - averaging period
 - valorization rules
- Penalties for early retirement, increments for late retirement
Post-retirement pensions: indexation methods

- Price indexation: pensions move with the price level; their real value remains unchanged
- Wage indexation: pensions move with wages; their relative value remains unchanged
- Combination of price and wage indexation (e.g. Swiss formula)
- Other indexation rules (ad hoc, fixed %, COLA, etc.)
How to affect finances through dependency rate?

- If contribution rate and replacement rate are fixed:
 \[\text{DR} = \frac{\text{CR}}{\text{RR}} \]

- Dependency rate is not a policy variable, but some policy choices can change it.
System dependency rate depends on:

- Number of pensioners (P) ←
 - Demographic factors (population size and age structure, mortality rate after retirement → life expectancy after retirement)
 - Policy choices in social security system (coverage in the past, retirement age, vesting period, eligibility criteria for receiving disability pensions, survivors benefits)
System dependency rate depends on (cont.):

✓ Number of contributors (E) ←
 - Demographic factors (working age population, fertility in the past, mortality, migration)
 - Economic factors (school-leaving age, labor force participation, unemployment, the size of informal sector)
 - Policy choices (retirement age, coverage, contribution rate (if high→evasion), other)
Key policy choices to adjust system dependency rate:

- Coverage
- Retirement age
- Other (eligibility criteria, min/max, etc.)
Coverage: link between contributors and beneficiaries

- Contributors today \rightarrow beneficiaries tomorrow \rightarrow long-term changes in dependency rate
- Increase/decrease in coverage rates for contributors today result in increase/decrease in coverage rates for pensioners tomorrow

Example: low dependency rates when system is young \rightarrow dependency rate increases as system matures
Coverage: link between contributors and beneficiaries (cont.)

- Average contribution density to the pension system affects the link between today’s contributors and tomorrow’s pensioners.

- Average years of service at retirement – proxy for “contribution density”. Pension system design (e.g. vesting period, max RR, other) \(\rightarrow\) built-in incentives + economy \(\rightarrow\) behavior

- Same coverage rates for contributors today result in higher/lower coverage rates for pensioners tomorrow with lower/higher contribution density
Retirement age

- Quantitative analysis of various pension systems: retirement age is the most effective policy variable to adjust long run DR
- Changes in retirement age affect both the nominator and denominator in DR=P/E
- If life expectancy increases, retirement age has to be adjusted to keep the system balanced
From the basic relationship (CR=RR*DR) → To make a PAYG DB financially sustainable, policy makers can change only two of the three key parameters:

- contribution rate
- replacement rate
- retirement age

Once two parameters are set, the third is determined endogenously.

Limits for setting exogenous parameters (e.g. replacement rate – social, contribution rate – economic, retirement age – physical)
Implicit pension debt in PAYG

- PAYG hides the true long-run cost of pension system
- As workers contribute, they are promised future pension, so the system accumulates liabilities, but no funds accumulate to pay debt: system has implicit (hidden) liabilities
- Three main approaches to measure IPD (unfunded liabilities): termination, closed-system, open-system measures
IPD: termination measure

- Liabilities accrued-to-date – if the system were stopped today; no new contributions, no new pension rights (variants – current vs. projected wages, indexation)

- Present value of future benefits owed to pensioners and workers for past contributions:

\[\frac{B_1}{1+d} + \frac{B_2}{(1+d)^2} + \ldots + \frac{B_T}{(1+d)^T} \]

Where \(B_t \) = pension payments in year \(t \), \(t=1,\ldots,T \)
\(d \) = discount rate

- Important estimate of transition costs in case of shift to a funded DC system
IPD: closed-system measure

- Closed system liabilities – if the system continues only for existing participants; no new entrants

- Net present value of future contributions and benefit payments

\[
(C_1 - B_1)/(1+d) + (C_2 - B_2)/(1+d)^2 + \ldots + (C_N - B_N)/(1+d)^N
\]

where

- \(B_t\) = pension payments in year \(t\), \(t=1,\ldots,N\)
- \(C\) = contributions in year \(t\), \(t=1,\ldots,N\)
- \(d\) = discount rate
IPD: open-system measure

- Open system liabilities – if the system continues indefinitely; open to new entrants

- Net present value of future contributions and benefit payments

\[
\frac{(C_1 - B_1)}{(1+d)} + \frac{(C_2 - B_2)}{(1+d)^2} + \ldots + \frac{(C_M - B_M)}{(1+d)^M}
\]

Where

- \(B_t \) = pension payments in year \(t, t=1,\ldots,M \)
- \(C \) = contributions in year \(t, t=1,\ldots,M \)
- \(d \) = discount rate
Fully Funded Defined Contribution systems

- Contribution is put into individual’s account → Assets are accumulated and earn interest, accumulated capital used to pay for pensions. So, no implicit debt or unaffordable promises;

- Pension depends on:
 - Contribution rate
 - Individual’s wages
 - Rate of return, rate of return-wage growth gap
 - Passivity ratio (retirement years/working years → years of service, retirement age, life expectancy)
 - Other (e.g. administrative costs)
Capital accumulated by the year of retirement

\[AC = C_1*(1+r)^N + C_2*(1+r)^{N-1} + \ldots + C_N*(1+r) \]

where

\[C_t = CR_t * W_t \]

\[N = \text{number of working years} \]

\[r = \text{rate of return (here assumed to be constant)} \]

\[C_t = \text{contribution in year } t, \text{ for } t = 1, 2, \ldots, N \]

\[CR_t = \text{contribution rate in year } t, \text{ for } t = 1, 2, \ldots, N \]

\[W_t = \text{worker’s wage in year } t, \text{ for } t = 1, 2, \ldots, N \]
Benefit payout: annuity

- When worker retires, AC is turned into pension which is set so that:

\[B_0 + \frac{B_1}{(1+r)} + \ldots + \frac{B_M}{(1+r)^M} = AC \]

- Initial benefit calculation: \(B_0 = \frac{AC}{AF} \)

where

\[B_t = B_{t-1} \times \text{indexation coefficient, } t>0 \]

\(M = \text{number of retirement years} \)

\(AF = \text{annuity factor} \)

- No bequest to survivors
Annuity factor:

- If a person of certain age and gender is promised a benefit=$1, with specified indexation rules, how much is such a promise worth in today’s dollars?

\[1 + \text{ind}_1 \cdot \frac{\text{surv}_1}{1+r} + (\text{ind}_1 \cdot \text{ind}_2) \cdot \frac{\text{surv}_1 \cdot \text{surv}_2}{(1+r)^2} + \ldots \]

where

- \(\text{ind}_t \) = indexation coefficient in year \(t \) of retirement
- \(\text{surv}_t \) = probability of surviving from year \(t-1 \) to \(t \)
Benefit payout: programmed withdrawals

- The account continues to earn interest while pensioner withdraws funds
- Benefit is recalculated each year:
 \[B_t = \frac{RC_t}{LE_{t,a}} \]
 where
 \(RC_t = \) remaining capital in year \(t \)
 \(LE_{t,a} = \) life expectancy at age \(a \) in year \(t \)
- If dies early, the remaining balance is turned over to survivors. If lives very long, \(B_t \) may become very low
- Other payout forms (lumpsums, required minimum annuity, etc.)
Notional Defined Contribution schemes

- Contributions based on a fixed percent of individual earnings create account values
- Account balances earn a rate of return (notional) set by the government
- PAYG financed: current contributions pay for current benefits
- “Notional accounts”: just a series of individual claims on the future public budget
- DC formula for pension calculation
Notional capital accumulated by the year of retirement

\[\text{NAC} = C_1 \times (1+n)^N + C_2 \times (1+n)^{N-1} + \ldots + C_N \times (1+n) \]

where

\[C_t = CR_t \times W_t \]
\[N = \text{number of working years} \]
\[n = \text{notional interest rate (here assumed to be constant)} \]
\[C_t = \text{contribution in year } t, \text{ for } t = 1, 2, \ldots, N \]
\[CR_t = \text{contribution rate in year } t, \text{ for } t = 1, 2, \ldots, N \]
\[W_t = \text{worker’s wage in year } t, \text{ for } t = 1, 2, \ldots, N \]
Notional defined contribution schemes: payouts

- Accumulated account values are annuitized at the time of retirement
- Annuities are calculated on the basis of accumulated notional capital and life expectancy at the age of retirement:
 \[B_0 = \frac{NAC}{AF} \]
 where
 - \(B_0 \) = initial annuity (pension)
 - NAC = account value (notional capital)
 - AF = annuity factor
- Further indexed according to system rules
Pension systems: individual’s perspective

- How do particular types of individuals fare under different types of pension system?
- Compare what a person contributes to the system and what he/she receives from the system
- Indicators: contribution rate, covered wage, individual replacement rate, pension wealth (present value of expected pension payments), internal rate of return
Internal rate of return

- Participation in a pension system can be viewed as investment (implicit in PAYG, more explicit in FF)
- Comprehensive measure of effectiveness of participating in the pension system from individual’s standpoint: interest paid by the system
- Calculated as discount rate equalizing the present of contributions paid to the system and the present value of benefits received from the system
How IRR can be used?

- Do individuals lose or benefit? Comparison with alternative investment options (e.g. IRR vs market interest rate)
- Important in the analysis of intra- and intergenerational distribution effects

 Example: men and women with same wages pay same contributions, retire at the same age, get same replacement rate but IRR for women is higher \Leftarrow life expectancy (hidden redistribution from men to women in DB; also in DC if unisex mortality table)
- An important indicator in the financial sustainability analysis of pension system as a whole
Thank You!