Survey nonresponse and the distribution of income

Emanuela Galasso* Development Research Group, World Bank

Module 1. Sampling for Surveys

- 1: Why are we concerned about non response?
- 2: Implications for measurement of poverty and inequality
- 3: Evidence for the US
 - Estimation methods
 - Results
- 4: An example for China

1: Why do we care?

Types of nonresponse

Item-nonresponse

- (participation to the survey but non-response on single questions)
 - Imputation methods using matching
 - Lillard et al. (1986); Little and Rubin (1987)

Types of nonresponse

Item-nonresponse

- Imputation methods using matching
 - Lillard et al. (1986); Little and Rubin (1987)

The idea:	Observations with	X	Y
	complete data	Yes	Yes
	missing data	Yes	No

- For sub-sample with complete data: Y = M(X)
- Then impute missing data using: $\hat{Y} = \hat{M}(X)$

Types of nonresponse

- Unit-nonresponse ("non-compliance")
- (non-participation to the survey altogether)

Unit-nonresponse: possible solutions

Ex-ante:

- Replace non respondents with similar households
- Increase the sample size to compensate for it
- Using call-backs, monetary incentives:
 - Van Praag et al. (1983), Alho (1990), Nijman and Verbeek (1992)
- **Ex-post:** Corrections by re-weighting the data
- Use imputation techniques (hot-deck, cold-deck, warm-deck, etc.) to simulate the answers of nonrespondents

Unit-nonresponse: possible solutions Ex-ante:

- Replace nonrespondents with similar households
- Increase the sample size to compensate for it
- Using call-backs, monetary incentives:
 - Van Praag et al. (1983), Alho (1990), Nijman and Verbeek (1992)

Ex-post: Corrections by re-weighting the data

- Use imputation techniques (hot-deck, cold-deck, warm-deck, etc.) to simulate the answers of nonrespondents
- None of the above...

The best way to deal with unit-nonresponse is to prevent it

Lohr, Sharon L. Sampling: Design & Analysis (1999)

Source: "Some factors affecting Non-Response." by R. Platek. 1977. Survey Methodology. 3. 191-214

Rising concern about unitnonresponse

- High nonresponse rates of 10-30% are now common
 - LSMS: 0-26% nonresponse (Scott and Steele, 2002)
 - UK surveys: 15-30%
 - US: 10-20%
- Concerns that the problem might be increasing

Nonresponse is a <u>choice</u>, so we need to understand behavior

- Survey participation is a matter of choice
 - nobody is obliged to comply with the statistician's randomized assignment
- There is a perceived utility gain from compliance
 - the satisfaction of doing one's civic duty
- But there is a cost too
- An income effect can be expected

Nonresponse bias in measuring poverty and inequality

Compliance is unlikely to be random:

- Rich people have:
 - higher opportunity cost of time
 - more to hide (tax reasons)
 - more likely to be away from home?
 - multiple earners
- Poorest might also not comply:
 - alienated from society?
 - homeless

2: Implications for poverty and inequality measures

Implications for poverty

- F(y) is the true income distribution, density f(y)
- $\hat{F}(y)$ is the observed distribution, density $\hat{f}(y)$

• Note:
$$F(y_p) = \hat{F}(y_p) = 0$$
 and $F(y_r) = \hat{F}(y_r) = 0$

Implications for poverty

- F(y) is the true income distribution, density f(y)
- $\hat{F}(y)$ is the observed distribution, density $\hat{f}(y)$
- Note: $F(y_p) = \hat{F}(y_p) = 0$ and $F(y_r) = \hat{F}(y_r) = 0$

Definition: <u>correction factor</u> w(y) such that:

$$f(y) = w(y)\hat{f}(y)$$
$$F(y) = \int_{y_p}^{y} w(x)\hat{f}(x)dx$$

Implications for poverty cont.,

If compliance falls with income then poverty is overestimated for all measures and poverty lines.

i.e., first-order dominance:

if w'(y) > 0 for all $y \in (y_P, y_R)$,

then $F(y) < \hat{F}(y)$ for all $y \in (y_P, y_R)$

First-order dominance

Example

	"Poor"	"Non-poor"
Estimated distribution (%)	81	19
However,		
Response rate (%)	90	50
True distribution of	70	30
population (%)		
Correction factors	0.87	1.56

Implications for inequality

If compliance falls with income (w'(y) > 0)then the implications for inequality are ambiguous

Lorenz curves intersect so some inequality measures will show higher inequality, some lower

Example of crossing Lorenz Curves

3: Evidence for the U.S.

Current Population Survey

Source: CPS March supplement, 1998 – 2002, Census Bureau

3 types of "non-interviews:"

- type A: individual refused to respond or could not be reached
 → what we define as "non-response"
- type B: housing unit vacant; type C: housing unit demolished
 → we ignore type B/C in our analysis

Year	total number of	Type A households	rate of non- response
	households		(%)
1998	54,574	4,221	7.73%
1999	55,103	4,318	7.84%
2000	54,763	3,747	6.84%
2001	53,932	4,299	7.97%
2002	84,831	6,566	7.74%
All years	303,203	23,151	7.64%

Dependence of response rate on income

Response rate and average per-capita income for 51 US states, CPS March supplement 2002

State	Response	Average	
	Rate	Income	
Maryland	86.77%	\$31,500	
District Of Columbia	87.21%	\$34,999	
Alaska	88.16%	\$26,564	
New York	88.61%	\$26,013	
New Jersey	88.71%	\$28,746	
California	89.66%	\$26,822	
Mississippi	95.08%	\$17,821	
Indiana	95.21%	\$23,909	
North Dakota	95.36%	\$20,154	
Georgia	95.66%	\$23,893	
West Virginia	96.65%	\$18,742	
Alabama	97.24%	\$21,155	

Dependence of response rate on income

Response rate and average per-capita income for 51 US states, CPS March supplement 2002

Estimation method

- In survey data, the income of non-responding households is by definition unobservable.
- However, we can observe the survey compliance rates by geographical areas.
- The observed characteristics of responding households, in conjunction with the observed compliance rates of the areas in which they live, allow one to estimate the household-specific probability of survey response.
- Thus we can correct for selective compliance by re-weighting the survey data.

Estimation method cont.,

- { (X_{ij}, m_{ij}) } ... set of households in state j s.t. m_{ij} households each carry characteristics X_{ij}, where X_{ii} includes e.g. ln(y_{ii}), a constant, etc.
- total number of households in state $j: M_i$
- representative sample S_j in state j with sampled households $m_j = \Sigma m_{ij}$
- for each sampled household ε there's a probability of response $D_{\varepsilon ij}$ {0,1}

$$P(D_{\varepsilon ij} = 1 | X_{ij}, \theta) = P_i = \log istic(X_i \theta)$$

Estimation method cont.,

 The observed mass of <u>respondents</u> of group *i* in state/area *j* is

$$E(m_{ij}^{obs}) = m_{ij}P_i$$
$$E[\frac{m_{ij}^{obs}}{P_i}] = m_{ij}$$

• Then summing up for a given j yields:

$$\left[\sum_{i} \frac{m_{ij}^{obs}}{P_i}\right] = \sum_{i=1} w_{ij} = m_j$$

• Now let's define:

$$\psi_{j}(\theta) \equiv \sum_{i} \left\{ \frac{m_{ij}^{obs}}{P_{i}} - E\left[\frac{m_{ij}^{obs}}{P_{i}}\right] \right\} = \sum_{i} \left\{ \frac{m_{ij}^{obs}}{P_{i}} - m_{j} \right\}$$

These are the individualThis is known!28weights

$$\psi_{j}(\theta) \equiv \sum_{i} \{\frac{m_{ij}^{obs}}{P_{i}} - E[\frac{m_{ij}^{obs}}{P_{i}}]\} = \sum_{i} \{\frac{m_{ij}^{obs}}{P_{i}} - m_{j}\}$$

where obviously $E[\psi_j(\theta)] = 0$

Then we can estimate

$$\hat{\theta} = \arg\min_{(\theta)} \Psi(\theta) \equiv \psi(\theta) W^{-1} \psi(\theta)$$

Estimation method cont.,

Optimal weighting matrix $W = Var(\psi(\theta))$... Hansen (1982)

Assume for single state j:

$$Var[\psi_j(\theta)] = m_j \sigma^2$$

This can be estimated as $\hat{\sigma}^2 = \frac{2}{5}$

$$\Phi^2 = \frac{\sum \psi_j(\theta)^2}{\sum w_j}$$

Finally,
$$\hat{Var}(\hat{\theta}) = \hat{\sigma}^2 [G'NG]^{-1}$$
 where $G = \frac{\partial \psi(\theta)}{\partial \theta}$

Alternative Specifications

Specification	$\Psi(\theta)_{\min}$	θ_{I}	θ_2	θ_{3}
1: $P = logit(\theta_1 + \theta_2 ln(y) + \theta_3 ln(y)^2)$	27.866	32.55	-4.151	0.1193
		(85.95)	(-15.90)	(0.7320)
2: $P = logit(\theta_1 + \theta_2 ln(y))$	27.940	17.81	-1.489	
		(3.51)	(-0.329)	
3: $P = logit(\theta_1 + \theta_3 ln(y)^2)$	28.068	9.551		-0.0666
		(1.646)		(-0.0145)
4: $P = logit(\theta_2 ln(y) + \theta_3 ln(y)^2)$	28.324		1.725	-0.1438
			(0.289)	(-0.0272)
$5: P = logit(\theta_1 + \theta_2 y)$	34.303	2.995	-13.11·10 ⁻⁶	
		(0.202)	$(-4.76 \cdot 10^{-6})$	
$6: P = logit(\theta_1 + \theta_2 y + \theta_3 y^2)$	28.639	3.792	-37.45·10 ⁻⁶	$67.21 \cdot 10^{-12}$
		(0.463)	$(-14.92 \cdot 10^{-6})$	$(58.33 \cdot 10^{-12})$
$7: P = logit(\theta_1 + \theta_2 y + \theta_3 ln(y))$	27.891	19.64	$1.889 \cdot 10^{-6}$	-1.671
		(12.13)	$(17.35 \cdot 10^{-6})$	(-1.229)

Results From Specification 2 $P = logit(\theta_1 + \theta_2 ln(y))$

Year	$\Psi(\theta)_{\min}$	θ_1	θ_2	Gini _{uncorr}	Gini _{corr}	∆Gini
1998	17.321	19.90	-1.697	45.49%	50.92%	5.43%
		(4.58)	(-0.43)			
1999	21.437	18.10	-1.528	45.21%	49.03%	3.82%
		(4.42)	(-0.418)			
2000	12.558	22.21	-1.890	44.30%	47.67%	3.37%
		(4.46)	(-0.413)			
2001	17.793	20.11	-1.702	44.99%	49.47%	4.48%
		(3.82)	(-0.355)			
2002	27.94	17.81	-1.489	44.36%	48.02%	3.66%
		(3.51)	(-0.329)			
All	102.16	19.47	-1.654	44.83%	49.07%	4.24%
		(1.89)	(-0.177)			

Graph of specification 2:

Probability of compliance as a function of income

Empirical and Corrected Cumulative Income Distribution

Income Distribution: Magnification

Correction by Percentile of Income

Empirical and Corrected Lorenz Curve

37

Lorenz Curves: Magnification

Specifications with Other Variables

Specifications 10 - 18, P = logit($\theta_1 + \theta_2 \ln(y) + \theta_3 X_1 + \theta_4 X_2$):

Specification	$\Psi(\theta)_{\min}$	$\boldsymbol{\theta}_1$	θ_2	θ_3	θ_4	Gini corrected	∆Gini
2: (baseline)	102.16	19.47	-1.654			49.07%	4.24%
		(1.89)	(-0.177)				
$10: X_1 = age$	100.19	17.78	-1.695	0.09321	-0.00092	49.09%	4.26%
$X_2 = age^2$		(3.52)	(-0.188)	(0.10569)	(-0.00095)		
$11:X_1 = age$	101.84	20.17	-1.679	-0.00888		49.23%	4.40%
		(2.61)	(-0.201)	(-0.01648)			
$12: X_2 = age^2$	101.57	20.11			-0.00010	49.26%	4.43%
- 0		(2.31)	-1.688 (0.198)		(-0.00014)		
$13: X_{I} =$	100.52	20.04	-1.696	-0.6123		49.23%	4.40%
(age>64)		(2.06)	(-0.188)	(-0.5753)			
$14:X_1 = edu$	99.795	25.90	-1.469	-1.481	0.06235	48.52%	3.69%
$X_2 = edu^2$		(7.59)	(-0.334)	(-1.447)	(0.06456)		
$15:X_1 = edu$	101.15	18.71	-1.502	-0.08292		48.68%	3.85%
		(2.48)	(-0.333)	(-0.12667)			
$16: X_{I} =$	98.725	18.44	-1.456	-1.352		48.53%	3.70%
(edu>39)		(1.93)	(-0.233)	(-1.187)			
$17: X_1 = sex$	101.00	19.37	-1.627	-0.4785		48.84%	4.01%
		(1.92)	(-0.187)	(-0.5315)			
$18: X_1 = race$	93.353	17.51	-1.516	0.5877		48.26%	3.43%
		(1.96)	(-0.183)	(0.1592)			
$19: X_1 = size$	100.11	21.51	-1.777		-0.3102	49.15%	4.32%
		(2.12)	(-0.189)		(-0.1316)		
$20: X_1 = race$	91.709	19.15	-1.618	0.5672	-0.229	48.38%	3.55%
$X_2 = size$		(2.16)	(-0.189)	(0.1574)	(-0.1289)		

4: China

Example for China

- Urban Household Survey of NBS
- Two stages in sampling
 - <u>Stage 1</u>: Large national random sample with very short questionnairre and high repsonse rate
 - <u>Stage 2</u>: Random sample drawn from Stage 1 sample, given very detailed survey, including daily diary, regular visits etc
- Use Stage 1 data to model determinants of compliance
- Then re-weight the data

Further reading

- Korinek, Anton, Johan Mistiaen and Martin Ravallion, "An Econometric Method of Correcting for unit Nonresponse Bias in Surveys," *Journal of Econometrics*, (2007), 136: 213-235
- Korinek, Anton, Johan Mistiaen and Martin Ravallion, "Survey Nonresponse and the Distribution of Income." *Journal of Economic Inequality*, (2006), 4:33-55