Introduction and Applications
The HDM-4 Model

• Analytical tool for engineering and economic assessment of
 - road investments and maintenance
 - transport pricing and regulation

• Physical and economic relationships derived from extensive research on road deterioration, the effects of maintenance activities, and vehicle operation and user costs
International Collaboration

• 1969-1995 – HDM-III
 - Collaborative international studies
 World Bank & MIT, LCPC, TRRL, UNDP
 - Governments of Kenya, Brazil, Caribbean, India
 - $20 million data collection in
 4 field studies

• 1995-2005 – HDM-4 version 1.0 to 1.3
 - International sponsors, PIARC
 - Redesign of functions and software
 - Focus on road agency usage

• 2006-> HDM-4 version 2.0
 - HDMGlobal International Consortium
 responsible for management as sales
HDM-4 Version 1.0 to 1.3 Implementation Coordination

• In 1998 The World Road Association (PIARC) took responsibility for coordinating the international implementation of the Highway Development and Management System (HDM-4)

PIARC Web: http://hdm4.piarc.org
Email: piarc.hdm4@ibm.net
Fax: 33-1+49 00 02 02
HDM-4 Version 2.0
HDMGlobal Management

• HDMGlobal is an international consortium of academic and consultancy companies that have formed a partnership for the future management of HDM 4. This will be a five-year concession awarded by PIARC commencing June 2005 with exclusive rights for its distribution.

• At the center of consortium is the Highway Management Research Group a UK based association of the University of Birmingham, Atkins and Scott Wilson in partnership with; TRL Ltd also of the UK, ARRB Transport Research Ltd from Australia, ENPC and Scetauroute from France, and ICH of Chile.
The HDM4Global distributor role is to:
• sell the software license and deliver HDM-4 on CD-ROM
• deliver updates on disk or by internet download
• provide first contact support

Website: http://civ-hrg.bham.ac.uk/isohdmd/

E-mail: presses.ponts@mail.enpc.fr or sales@hdmglobal.com.
The HDM-4 Products on CD ROM

- HDM-4 software
- Case study data sets
- HDM Series documents
HDM-4 Series Collection
<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Developing Countries*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single License</td>
<td>3,000</td>
<td>2,000</td>
</tr>
<tr>
<td>Four Pack or more</td>
<td>2,550</td>
<td></td>
</tr>
<tr>
<td>Five Pack or more</td>
<td>2,400</td>
<td>2,000</td>
</tr>
</tbody>
</table>

* per capita GNI of less than USD3,255 equivalent per year
Minimum System Requirements

- Pentium P100 processor (or equivalent)
- 32MB of RAM
- 30MB of hard disk space (for program and documentation)
- 50MB of hard disk space (for storage of run-data)
- Windows 95/98 or NT 4 with Service Pack 6a installed
HDM-4 Technical Improvements

- Pavements
 - Wider range of flexible pavements
 - Rigid pavements
 - More maintenance types
 - Drainage effects
 - Freezing climates effects
- Road Users
 - New vehicle types
 - Characteristics of Modern Vehicles
 - Non-motorized traffic
 - Congestion effects
 - Accidents
 - Emissions & Energy consumption
HDM-4 Software Improvements

- Windows 95/98/NT Environment
 - Easy to use
 - Different levels of input data
- Three Application Modules
 - Project Evaluation
 - Network Programme Evaluation
 - Network Strategic Planning Evaluation
- Better interface with Pavement Management Systems
The HDM Computer Programs

Fortran

- HCM 1970
- HDM-II 1975
- HDM-III 1985
- HDM-III PC 1989
- HDM-Q PC 1995

Clipper / DOS

- HDM Manager 1.0 1991
- HDM Manager 2.0 1993
- HDM Manager 3.0 1995
- HDM Manager 3.2 1999
 Limited Distribution

Windows 95/98/NT

- HDM-4 1.0 2000
- HDM-4 1.3 2002
- HDM-4 2.0 2006
Comparison of Road Agency Alternatives

- Standards / Alternatives
- Policies / Strategies
- Norms / Options

- Paved road alternatives, e.g.:
 - overlay at specified condition or time
 - reseal first and overlay later
 - reconstruct at specified condition or time
 - do nothing or do minimum (patching)
 - widen pavement at specified time or V/C
 - improve alignment or add lane

- Unpaved road alternatives, e.g.:
 - grading every 180 days
 - upgrade to paved standard at time or condition
Evaluation of Alternatives

- Economic evaluation
- Technical evaluation
- Institutional evaluation
- Financial evaluation
- Commercial evaluation
- Social evaluation
- Environmental evaluation
Transport Benefits

- Reduce vehicle operating cost
- Savings in time of passengers and cargo
- Reduction of accidents
- Stimulate regional development
- Increase the comfort and convenience
- Better national integration
- National security
- Greater self-sufficiency
- Equal distribution of income
- Prestige of the country
The Beginning, 1969

- More than 10,000 million dollars are spent on the highway sector each year in developing countries. The cost borne by the road-using public for vehicle operation are typically 8 to 10 times greater.

- In Europe and North America:
 - high traffic volumes
 - high values attached to travel time savings
 - relatively abundant capital resources

- In developing countries:
 - traffic levels often much lower
 - values given to travel time savings are far lower
 - acute shortage of financial resources
Pavement Management Approaches

- Crisis-oriented approach: highway facilities are operated with little or no maintenance until obstructions occur, then extensive restoration and reconstruction work is needed.

- Condition-responsive/financial approach: physical standards are set in relation to:
 a) perceived technical requirements,
 b) acceptable service levels,
 c) received budget.

- Technical-economic efficiency approach: functional and technical standards are selected to minimize total road transport costs to society.
Basis for Investment Decisions – Technical-economic Efficiency

- Current Condition
- Deterioration Prediction
- Remaining Service Life

- Current Condition
- Deterioration Prediction
- Maintenance Effects
- Vehicle Operating Costs

Worst First?

Overall Index

Terminal Life or Condition Limit?

Benefits to Society?
Total Society Costs

= ROAD AGENCY COSTS
 Construction
 Maintenance

+ ROAD USER COSTS
 Vehicle operation
 Passenger and cargo time
 Accidents
Total Society Costs

- Road User Costs
- Road Agency Costs
- Improve Standard
Minimizing Consumption of Resources

Consumption of Resources \(\times \) Unit Costs = Total Society Costs
Financial & Economic Unit Costs

- Financial Prices
 - Market Prices

- Economic Prices
 - Shadow Prices
 - Social Prices

Do not reflect the real scarcity value of the inputs

Developing Countries
- Government Controls
- Taxes
- Subsidies
- Regulations
- Rapid Inflation
- Overvaluation of Domestic Currency
Primary Features of HDM-4

• Simulates deterioration and maintenance of paved and unpaved roads, in physical condition and quantities, for strategies defined by the user

• Simulates road user costs (speeds and consumption of physical resources)

• Determines time-streams of road agency, road user costs, and net benefits

• Computes economic indicators
Road User Costs Model

- Road Geometry, Condition
- Driver, Traffic Flow
 - Vehicle Characteristics
 - SPEED
 - Fuel & Lubricants
 - Tire
 - Maintenance Parts & Labor
 - Crew Time
 - Depreciation & Interest
 - Passenger & cargo time
Paved Road Deterioration Model

Moisture, Temperature Aging

Traffic, Loading

Pavement Materials, Thickness

Cracking

Ravelling

Potholing

Rutting

Roughness
Vehicle Operating Costs

VOC per vehicle-km ($)

Roughness (IRI)

Car
Truck
Articulated Truck
HDM-4 Limitations

• The model accepts but does not perform network traffic assignment

• Limited estimation of environmental impacts such as air or noise pollution, and not costed internally

• Only partially applicable to urban traffic conditions – through acceleration variance

• Option for evaluating cement blocks and cobblestone pavements not yet implemented
HDM-4 Applications

- Project Justification
- Program Formulation
- Maintenance Needs Forecasting
- Network Analysis
- Technical Standards
- Vehicle Policies
Project Justification

A Gravel Road

Current Policy
- Gravel resurfacing when thickness of gravel is less than 50mm
- Routine maintenance
- Grading every 90 days

Proposed Project
- Upgrade the road to a paved standard
- After the upgrading, routine maintenance, patching 100% of the potholes, and resealing when damaged area > 20%
Comparison of Alternatives

- Evaluation Period = 20 years
- Discount rate = 12.00%

<table>
<thead>
<tr>
<th>Length (km)</th>
<th>Construction Costs</th>
<th>Road User Costs</th>
<th>Total Costs</th>
<th>Net Present Value</th>
<th>Internal Rate of Return (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE</td>
<td>2.71</td>
<td>26.7</td>
<td>29.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROJ</td>
<td>9.28</td>
<td>17.0</td>
<td>26.2</td>
<td>3.2</td>
<td>17.1</td>
</tr>
</tbody>
</table>

Is the project economically justified?
Program Formulation

A Gravel Road

- Grading every 180 days
- Grading every 90 days
- Grading every 60 days
- Grading every 30 days
- Grading every 15 days
- Grading every 7 days
- Upgrade in 2001
- Upgrade in 2002
- Upgrade in 2003
- Upgrade in 2004
Project Economic Efficiency Frontier

Which is the optimal strategy?
Maintenance Needs Forecasting

A Paved Road in Good Condition

- Routine Maintenance
 Reconstruction when IRI > 11.0

- Routine Maintenance
 Patching 100% of potholes
 Reconstruction when IRI > 11.0

- Routine Maintenance
 Patching 100% of potholes
 12 mm Resealing when damage is > 30%
 Reconstruction when IRI > 11.0

- Routine Maintenance
 Patching 100% of potholes
 4 cm overlay when IRI is > 4.0

- Routine Maintenance
 Patching 100% of potholes
 8 cm overlay when IRI is > 4.0
Roughness Progression

![Graph showing roughness progression over years with different treatment types (BASE, P100, RE30, OS40, OD40).]
Efficiency Frontier

What will be the future maintenance needs?
Network Analysis

- What are the resources needed to maintain and develop the network?

- How should the agency allocate the resources needed?

- What program should be implemented in case of budgetary constraints?
Budgetary Constraints

Road Network

- A.C.
 - L
 - M
 - H

- Resource Constraints

- Optimization Module

- Optimal Program under Budgetary Constraints

<table>
<thead>
<tr>
<th>Program without Budgetary Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Diagnostic of the Network Condition

Roughness in 1998

- > 5.0 IRI: 64%
- 3.5 < IRI < 5.0: 8%
- < 3.5 IRI: 28%
Diagnostic of Road User Costs

Typical Road User Costs (Rs/vehicle-km)

Roughness (IRI)

- Car
- Wagon
- Bus
- S. Truck
- M. Truck
- H. Truck
Diagnostic of Agency Costs

Typical Periodic Maintenance Costs

- 30 cm Gran. Base / 25 cm AC
- 30 cm Gran. Base / 20 cm AC
- 30 cm Gran. Base / 15 cm AC
- 25 cm Overlay
- 20 cm Overlay
- 15 cm Overlay
- 13 cm Overlay
- 7.5 cm Overlay
- 5 cm Overlay
- 30 mm TST
- 25 mm DST

Financial Costs (Million Rs/km)
Diagnostic of Road Classes

Primary Network

<table>
<thead>
<tr>
<th>Surface</th>
<th>Traffic (ADT)</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
<th>Very Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1000</td>
<td>< 5% <5%</td>
<td>368</td>
<td>438</td>
<td>214</td>
<td>179</td>
</tr>
<tr>
<td>1000 - 3000</td>
<td>5-25% <5%</td>
<td>368</td>
<td>438</td>
<td>214</td>
<td>179</td>
</tr>
<tr>
<td>3000 - 5000</td>
<td>>25% >5%</td>
<td>368</td>
<td>438</td>
<td>214</td>
<td>179</td>
</tr>
<tr>
<td>5000 - 7000</td>
<td>>5% >5%</td>
<td>368</td>
<td>438</td>
<td>214</td>
<td>179</td>
</tr>
<tr>
<td>> 7000</td>
<td>>25% >5%</td>
<td>368</td>
<td>438</td>
<td>214</td>
<td>179</td>
</tr>
<tr>
<td>Total</td>
<td>%</td>
<td>368</td>
<td>438</td>
<td>214</td>
<td>179</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface Treatment</th>
<th>< 1000</th>
<th>1000 - 3000</th>
<th>3000 - 5000</th>
<th>5000 - 7000</th>
<th>> 7000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>132</td>
<td>22</td>
<td>13</td>
<td>49</td>
<td>15</td>
</tr>
<tr>
<td>Concrete</td>
<td>132</td>
<td>22</td>
<td>13</td>
<td>49</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>264</td>
<td>44</td>
<td>26</td>
<td>98</td>
<td>30</td>
</tr>
</tbody>
</table>

Secondary Network

<table>
<thead>
<tr>
<th>Surface</th>
<th>Traffic (ADT)</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
<th>Very Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1000</td>
<td>< 5% <5%</td>
<td>368</td>
<td>438</td>
<td>214</td>
<td>179</td>
</tr>
<tr>
<td>1000 - 3000</td>
<td>5-25% <5%</td>
<td>368</td>
<td>438</td>
<td>214</td>
<td>179</td>
</tr>
<tr>
<td>3000 - 5000</td>
<td>>25% >5%</td>
<td>368</td>
<td>438</td>
<td>214</td>
<td>179</td>
</tr>
<tr>
<td>5000 - 7000</td>
<td>>5% >5%</td>
<td>368</td>
<td>438</td>
<td>214</td>
<td>179</td>
</tr>
<tr>
<td>> 7000</td>
<td>>25% >5%</td>
<td>368</td>
<td>438</td>
<td>214</td>
<td>179</td>
</tr>
<tr>
<td>Total</td>
<td>%</td>
<td>368</td>
<td>438</td>
<td>214</td>
<td>179</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface Treatment</th>
<th>< 1000</th>
<th>1000 - 3000</th>
<th>3000 - 5000</th>
<th>5000 - 7000</th>
<th>> 7000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>132</td>
<td>22</td>
<td>13</td>
<td>49</td>
<td>15</td>
</tr>
<tr>
<td>Concrete</td>
<td>132</td>
<td>22</td>
<td>13</td>
<td>49</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>264</td>
<td>44</td>
<td>26</td>
<td>98</td>
<td>30</td>
</tr>
</tbody>
</table>
Solution Catalog per Budget Level

Primary Network

<table>
<thead>
<tr>
<th>Surface</th>
<th>Traffic (ADT)</th>
<th><5%</th>
<th>5-25%</th>
<th>>25%</th>
<th><5%</th>
<th>5-25%</th>
<th>>25%</th>
<th><5%</th>
<th>5-25%</th>
<th>>25%</th>
<th><5%</th>
<th>5-25%</th>
<th>>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>< 1000</td>
<td>01</td>
<td>-</td>
</tr>
<tr>
<td>1000 - 3000</td>
<td>03 - 7</td>
<td>01</td>
<td>02</td>
<td>05</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>04</td>
<td>03</td>
<td>05</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3000 - 5000</td>
<td>03 - 3</td>
<td>-</td>
<td>02</td>
<td>1</td>
<td>03</td>
<td>05</td>
<td>3</td>
<td>05</td>
<td>3</td>
<td>05</td>
<td>03</td>
<td>05</td>
<td>05</td>
</tr>
<tr>
<td>5000 - 7000</td>
<td>03 - 5</td>
<td>04</td>
<td>04</td>
<td>5</td>
<td>04</td>
<td>04</td>
<td>3</td>
<td>05</td>
<td>04</td>
<td>3</td>
<td>04</td>
<td>04</td>
<td>05</td>
</tr>
<tr>
<td>> 7000</td>
<td>03 - 3</td>
<td>04</td>
<td>04</td>
<td>3</td>
<td>04</td>
<td>04</td>
<td>3</td>
<td>05</td>
<td>04</td>
<td>3</td>
<td>04</td>
<td>04</td>
<td>05</td>
</tr>
</tbody>
</table>

Secondary Network

<table>
<thead>
<tr>
<th>Surface</th>
<th>Traffic (ADT)</th>
<th><5%</th>
<th>5-25%</th>
<th>>25%</th>
<th><5%</th>
<th>5-25%</th>
<th>>25%</th>
<th><5%</th>
<th>5-25%</th>
<th>>25%</th>
<th><5%</th>
<th>5-25%</th>
<th>>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>Traffic (ADT)</td>
<td><5%</td>
<td>5-25%</td>
<td>>25%</td>
<td><5%</td>
<td>5-25%</td>
<td>>25%</td>
<td><5%</td>
<td>5-25%</td>
<td>>25%</td>
<td><5%</td>
<td>5-25%</td>
<td>>25%</td>
</tr>
<tr>
<td>Treatment</td>
<td>Surface</td>
<td>01</td>
<td>04</td>
<td>7</td>
<td>04</td>
<td>03</td>
<td>4</td>
<td>04</td>
<td>3</td>
<td>4</td>
<td>04</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1000 - 3000</td>
<td></td>
<td>03</td>
<td>04</td>
<td>5</td>
<td>04</td>
<td>04</td>
<td>3</td>
<td>04</td>
<td>3</td>
<td>04</td>
<td>04</td>
<td>04</td>
<td>05</td>
</tr>
<tr>
<td>3000 - 5000</td>
<td></td>
<td>03</td>
<td>04</td>
<td>5</td>
<td>04</td>
<td>04</td>
<td>3</td>
<td>04</td>
<td>1</td>
<td>04</td>
<td>04</td>
<td>04</td>
<td>05</td>
</tr>
<tr>
<td>5000 - 7000</td>
<td></td>
<td>03</td>
<td>04</td>
<td>3</td>
<td>04</td>
<td>04</td>
<td>3</td>
<td>05</td>
<td>1</td>
<td>04</td>
<td>04</td>
<td>04</td>
<td>05</td>
</tr>
<tr>
<td>> 7000</td>
<td></td>
<td>03</td>
<td>04</td>
<td>3</td>
<td>04</td>
<td>04</td>
<td>3</td>
<td>05</td>
<td>1</td>
<td>04</td>
<td>04</td>
<td>04</td>
<td>05</td>
</tr>
</tbody>
</table>

Periodic Operations (Billion Rs)

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Year 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Net Present Value

<table>
<thead>
<tr>
<th>B Rs</th>
<th>M $</th>
</tr>
</thead>
<tbody>
<tr>
<td>243</td>
<td>5404</td>
</tr>
</tbody>
</table>
Consequences to Society

Society Net Benefits Present Value (Billion Rs)

Periodic Expenditures (Billion Rs/year)
Consequences to the Network

Scenario: 6 Billion Rs per year

Year

Network Condition (%)

Average Roughness (IRI)

- Poor
- Fair
- Good
- Avg. IRI

1998 1999 2000 2001 2002 2003 2004
Consequences to the Agency

Budget Scenarios (Billion Rs per year)

Periodic Expenditures per Period (Billion Rs.)

- Period: Years 7 to 20
- Period: Years 1 to 6
Consequences to the Users

Network Road User Costs (Billion Rs)

Year

1999 2000 2001 2002 2003 2004

Network Road User Costs (Billion Rs)

Savings: 152 Billion Rs

6 Billion Rs per Year Case

Without Project Case
Support Definition of Budget Level

Average Network Roughness (IRI)

Year

1998 1999 2000 2001 2002 2003 2004

Budget Scenarios (Rs B per year)

1.0
2.0
3.0
4.5
6.0

6.0
4.5
3.0
2.0
1.0
Support for Allocation of Resources

Works for Scenario: 6 Billion Rs per Year

<table>
<thead>
<tr>
<th>Works</th>
<th>Years 1-6</th>
<th>Works per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>km Billion Rs</td>
<td>km Billion Rs</td>
</tr>
<tr>
<td>25 mm DST</td>
<td>390 0.17</td>
<td>65 0.03</td>
</tr>
<tr>
<td>30 mm TST</td>
<td>203 0.15</td>
<td>34 0.03</td>
</tr>
<tr>
<td>5 cm Overlay</td>
<td>501 2.11</td>
<td>84 0.35</td>
</tr>
<tr>
<td>7.5 cm Overlay</td>
<td>1386 7.21</td>
<td>231 1.20</td>
</tr>
<tr>
<td>13 cm Overlay</td>
<td>376 3.33</td>
<td>63 0.56</td>
</tr>
<tr>
<td>15 cm Overlay</td>
<td>353 2.81</td>
<td>59 0.47</td>
</tr>
<tr>
<td>30 cm Gran. Base / 15 cm AC</td>
<td>331 5.32</td>
<td>55 0.89</td>
</tr>
<tr>
<td>30 cm Stab. Base / 8 cm AC</td>
<td>801 8.52</td>
<td>134 1.42</td>
</tr>
<tr>
<td>15 cm Gran. / 5 cm AC</td>
<td>1978 5.79</td>
<td>330 0.97</td>
</tr>
<tr>
<td>Total</td>
<td>6319 35.41</td>
<td>1053 5.90</td>
</tr>
<tr>
<td>Functional Overlays & Reseals</td>
<td>2480 9.64</td>
<td>413 1.61</td>
</tr>
<tr>
<td>Structural Overlays & Reconstructions</td>
<td>3839 25.77</td>
<td>640 4.30</td>
</tr>
<tr>
<td>Total</td>
<td>6319 35.41</td>
<td>1053 5.90</td>
</tr>
<tr>
<td>Asphalt Concrete Roads</td>
<td>2352 11.73</td>
<td>392 1.96</td>
</tr>
<tr>
<td>Surface Treatment Roads</td>
<td>3967 23.68</td>
<td>661 3.95</td>
</tr>
<tr>
<td>Total</td>
<td>6319 35.41</td>
<td>1053 5.90</td>
</tr>
<tr>
<td>N-25</td>
<td>693 2.45</td>
<td>116 0.41</td>
</tr>
<tr>
<td>N-35</td>
<td>416 1.51</td>
<td>69 0.25</td>
</tr>
<tr>
<td>N-40</td>
<td>603 1.42</td>
<td>101 0.24</td>
</tr>
<tr>
<td>N-50</td>
<td>310 0.95</td>
<td>52 0.16</td>
</tr>
<tr>
<td>N-55</td>
<td>984 5.81</td>
<td>164 0.97</td>
</tr>
<tr>
<td>N-5ACW</td>
<td>819 4.16</td>
<td>137 0.69</td>
</tr>
<tr>
<td>N-5ECW</td>
<td>1670 15.39</td>
<td>278 2.57</td>
</tr>
<tr>
<td>N-65</td>
<td>385 1.86</td>
<td>64 0.31</td>
</tr>
<tr>
<td>N-70</td>
<td>439 1.87</td>
<td>73 0.31</td>
</tr>
<tr>
<td>Total</td>
<td>6319 35.41</td>
<td>1053 5.90</td>
</tr>
</tbody>
</table>
Support for Programming of Works

<table>
<thead>
<tr>
<th>Link</th>
<th>From City</th>
<th>To City</th>
<th>Type</th>
<th>Length (km)</th>
<th>Width (m)</th>
<th>Roughness (IRI)</th>
<th>All Cracks (%)</th>
<th>Rut Depth (mm)</th>
<th>Total Traffic (ADT)</th>
<th>Road Class</th>
<th>Solution</th>
<th>Cost (B Rs)</th>
<th>NPV (B Rs)</th>
<th>NPV/Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>Peshawar</td>
<td>Jamrud</td>
<td>AC</td>
<td>19</td>
<td>7.3</td>
<td>3.3</td>
<td>27.5</td>
<td>14</td>
<td>3657</td>
<td>P3AZ</td>
<td>02 - 1</td>
<td>0.01</td>
<td>0.46</td>
<td>31.46</td>
</tr>
<tr>
<td>58</td>
<td>Chichawa</td>
<td>Sahiwal</td>
<td>AC</td>
<td>86</td>
<td>7.3</td>
<td>1.5</td>
<td>26.7</td>
<td>6</td>
<td>4628</td>
<td>P3AZ</td>
<td>02 - 1</td>
<td>0.07</td>
<td>2.06</td>
<td>31.46</td>
</tr>
<tr>
<td>32</td>
<td>Shahdara</td>
<td>Muridke</td>
<td>AC</td>
<td>15</td>
<td>7.3</td>
<td>9.9</td>
<td>0.0</td>
<td>0</td>
<td>13994</td>
<td>P5DX</td>
<td>06 - 1</td>
<td>0.15</td>
<td>2.72</td>
<td>18.14</td>
</tr>
<tr>
<td>25</td>
<td>Khanewal</td>
<td>Mian Channu</td>
<td>AC</td>
<td>46</td>
<td>7.3</td>
<td>9.3</td>
<td>76.6</td>
<td>0</td>
<td>9754</td>
<td>P5DX</td>
<td>12 - 1</td>
<td>0.50</td>
<td>7.29</td>
<td>14.59</td>
</tr>
<tr>
<td>3</td>
<td>Hala</td>
<td>Sakrand</td>
<td>ST</td>
<td>41</td>
<td>7.3</td>
<td>7.3</td>
<td>30.3</td>
<td>4</td>
<td>7040</td>
<td>S5DX</td>
<td>12 - 1</td>
<td>0.43</td>
<td>5.37</td>
<td>12.40</td>
</tr>
<tr>
<td>5</td>
<td>Qazi Ahmets Moro</td>
<td>ST</td>
<td>56</td>
<td>7.3</td>
<td>7.7</td>
<td>47.9</td>
<td>4</td>
<td>8000</td>
<td>S5DX</td>
<td>12 - 1</td>
<td>0.59</td>
<td>7.34</td>
<td>12.40</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Panu Aqil</td>
<td>Ghotki</td>
<td>ST</td>
<td>28</td>
<td>7.3</td>
<td>7.8</td>
<td>32.1</td>
<td>3</td>
<td>8736</td>
<td>S5DX</td>
<td>12 - 1</td>
<td>0.30</td>
<td>3.67</td>
<td>12.40</td>
</tr>
<tr>
<td>15</td>
<td>Daherki</td>
<td>Ubaro</td>
<td>ST</td>
<td>14</td>
<td>7.3</td>
<td>10.7</td>
<td>26.2</td>
<td>10</td>
<td>8832</td>
<td>S5DX</td>
<td>12 - 1</td>
<td>0.15</td>
<td>1.84</td>
<td>12.40</td>
</tr>
<tr>
<td>16</td>
<td>Ubaro</td>
<td>Sadiq Abad</td>
<td>ST</td>
<td>41</td>
<td>7.3</td>
<td>8.3</td>
<td>41.8</td>
<td>8</td>
<td>8880</td>
<td>S5DX</td>
<td>12 - 1</td>
<td>0.43</td>
<td>5.37</td>
<td>12.40</td>
</tr>
<tr>
<td>6</td>
<td>Moro</td>
<td>Nowshero Fer</td>
<td>ST</td>
<td>25</td>
<td>7.3</td>
<td>8.6</td>
<td>32.6</td>
<td>7</td>
<td>7013</td>
<td>S5DX</td>
<td>12 - 1</td>
<td>0.26</td>
<td>3.28</td>
<td>12.40</td>
</tr>
<tr>
<td>11</td>
<td>Rohri</td>
<td>Panu Aqil</td>
<td>ST</td>
<td>32</td>
<td>7.3</td>
<td>7.4</td>
<td>41.9</td>
<td>13</td>
<td>11101</td>
<td>S5DX</td>
<td>12 - 1</td>
<td>0.34</td>
<td>4.19</td>
<td>12.40</td>
</tr>
<tr>
<td>13</td>
<td>Ghotki</td>
<td>Mir Pur Math</td>
<td>ST</td>
<td>25</td>
<td>7.3</td>
<td>8.5</td>
<td>36.1</td>
<td>5</td>
<td>8074</td>
<td>S5DX</td>
<td>12 - 1</td>
<td>0.26</td>
<td>3.28</td>
<td>12.40</td>
</tr>
</tbody>
</table>
Technical Standards

What is the optimal traffic threshold for paving?
How much road damage is caused by trucks?