Advancing integrated transport in Latin America cities

High Quality Transit in Latin America

Citywide Integrated Transit System in Cali, Colombia

Pilar Rodriguez
Vice-President SIBRT / President Metrocali
Inertial Future (everybody already knows…)

fewer passengers on Public Transport…

Modal Split Trend in Brazil (%) – similar to others

↑ Income, ↓ Prices

↑ Congestion

↑ Fare

↓ Speed

Source: ANTP
congestion, productivity loss, mobility reduction, and...
impacts on Public Health!

1.3 million deaths

1.2 million deaths

Noise: stress, cardiovascular diseases, analytical capacity problems

3.2 millions of deaths
Urban Public Transport NEEDS Urgent Improvements
The Latin-American Association of Integrated Systems and BRT (SIBRT) works for the development and quality improvement of urban transit.
64% of the world demand for BRT/Exclusive Bus Corridors are concentrated in 50 Latin American cities.
Rio de Janeiro: Primer BRT 2012
Transoeste: 40 km

New in 2012!

Foto: Mariana Gil/ EMBARQ Brasil
BOGOTA: Transmilenio Third Phase
Portal El Dorado

New in 2012!

MEXICO DF: Metrobus Line 4

New in 2012!

Photo: CTS EMBARQ Mexico
Since improvements are urgent, how can we improve quality? How can we accelerate modernization?
SIBRT – EMBARQ – BRT CoE

General Secretariat

Cooperation Agreement

BUS RAPID TRANSIT
ACROSS LATITUDES AND CULTURES

Cooperation Agreement

- SIBRT
- EMBARQ
- BRT CoE

- PUC - Chile
- Massachusetts Institute of Technology
- Technical University of Linbon
High Quality Urban Transit for All

- SIBRT is a Benchmarking Association
- Public Transit Agencies committed with improvement
- A capacity building process based on collaboration
- Learning from other’s experiences and mistakes
SIBRT Data

Support the GLOBAL BRT Data: www.brtdata.org

Produced by

SIBRT Datasheets: www.sibrtonline.org

- Basic Information
 55+ data from each associated system, with complementary information and links.

- Photos
 800+ photos with descriptions, showing the characteristics of each system.

- Maps
 Maps of corridors and routes of each system.
Introduce the **Performance Indicators and Complementary Information** monitored to **Identify Best Practices** and the aspects that we can be improved comparing to other agencies.

* The indicators are divided by topics and are monitored online by the associates, respecting the **confidentiality agreement**.

![Graph showing performance and cost/other attribute improvements](image)
Benchmarking and Innovation

Main Topics

- Quality of Service and User Satisfaction
- **Road Safety** for urban buses
- **Financing** of Integrated Transport Systems

Current Road Map:

- Technical Datasheets
- Benchmarking Indicators System
- Conferences and Workshops
- Terms of Reference studies contracting
- Studies + Guides of best practices

In cooperation with:

![EMBARQ](image1)
![Bus Rapid Transit](image2)
![SIBRT](image3)
I Workshop SIBRT on Quality of Service and User Satisfaction
SIBRT is working for a broad alliance of main urban transit stakeholders

Academia and Research
Center of Excellence BRT, Universities, Consulting

Government

Operators
Associations and Companies (NTU, AMTM...)

Industry
Vehicles, services and technology

Public agencies

Banks
Private, Multilateral and Development

Users
Press / Media
Transmilenio’s Model (Mexico, Colombia, Ecuador, Peru, ...)

- **Build BRT Corridors/Network** (trunk-fed high capacity system in parallel to conventional buses)
- **Need to eliminate competition** with conventional buses and extend better quality to the whole city
- **Create an Integrated Transport System**

In process, difficult...
Santiago’s Model (Brasil, Chile)

- Replace with **Citywide Transport System** (some BRT, most bus corridors)
- Low Investments, Insufficient Transit Priority, ↑Congestion, ↓Speed, ↓Passengers
- Optimize with **BRT corridors**, Increase speed, reliability and efficiency (in process...)

Foto: Luis Antonio Lindau/EMBARQ Brasil
Target: Integration y Optimization

Modal, fare, institutional, and management integration in Metropolitan Areas
Citywide Integrated Mass Transport System in Cali, Colombia

MIO

Outline

• Context

• Project description and progress

• Challenges and lessons learned
Context - Cali

- 3rd largest city in Colombia
- 2.3 million people in the urban area
- 2.9 million in the metropolitan area
Context - Transportation in Cali

- Conventional third world transit system
 - Privately owned buses
 - Public agency providing route permits but lacking service control

Mode Distribution in Cali

- 3.179.283 trips/day

- Public Transp 40%
- Auto 10%
- Moto 7%
- Bike 11%
- Tax 7%
- Walk 35%
- Jeeps 1%

Source: O-D Matrix – Bikeways Master Plan 2005
Context - Transportation in Cali

• Up to now
 – Started to implement a modern, integrated transit system

• We still had to
 – Create a sustainable multimodal mobility plan: recognizes all modes of transport but focuses on maintaining mode share for transit, bike, and walk trips
 • Invest in infrastructure for walk and bike trips
 • Integrate bike, walk, and taxi trips to transit effectively
 • Integrate regional transit to the city’s MIO system
 • Improve quality of service in MIO system
 • Discourage use of private cars and motorcycles
 • Create educational programs to reduce accident rate in motorcycles
Project Description – Integrated System

- Objective: replace conventional old bus system with new modern integrated transit system
 - Create new Transit Authority
 - Concession out operations to few companies and buy out old buses
 - Create new card-based payment system
Project Description - Corridors Map
Project Description - Operations

<table>
<thead>
<tr>
<th>Item</th>
<th>Planned</th>
<th>Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Transit Authority - Metrocali</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fare Collection System</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AVL System</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bike Sharing/Renting System</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Transit Demand Coverage</td>
<td>100%</td>
<td>53%</td>
</tr>
<tr>
<td>Daily Trips</td>
<td>960,000</td>
<td>510,000</td>
</tr>
<tr>
<td>Spatial Coverage (300 mt buffer)</td>
<td>100%</td>
<td>90%</td>
</tr>
<tr>
<td>Routes</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>New Buses in Operation</td>
<td>911</td>
<td>858</td>
</tr>
<tr>
<td>Old Buses out of Operation</td>
<td>4931</td>
<td>3228</td>
</tr>
</tbody>
</table>
Project Description - Infrastructure

<table>
<thead>
<tr>
<th>Item</th>
<th>Planned</th>
<th>Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trunk corridors</td>
<td>38 km</td>
<td>36 km</td>
</tr>
<tr>
<td>Terminal Stations</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Medium Transfer Stations</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Stations</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>Aerial Cable Line</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Bikeways</td>
<td>50 km</td>
<td>19.6 km</td>
</tr>
<tr>
<td>Bus Garages</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
Project Description - Infrastructure

- **Trunk Corridors**
- **Future Trunk Corridors**
- **Built Transfer Stations**
- **Future Transfer Stations**
- **Cable System**
Challenges and Lessons Learned

• Replacing old system – balancing act
 – Implementation schedule
 • Too fast (Santiago, Chile) – chaos
 • Too slow (Bogota, Colombia) – process may never finish
 – Who buys out old operators and bus owners?
 • Government
 • New operators
 • No one
 – Political will is absolutely necessary to enforce all necessary measures to replace old system while having a fair process
 • Difficult social process – impact on bus owners, drivers, other informal workers in the industry
Challenges and Lessons Learned

• Integrated Network Design
 – Usually, the conventional system in developing countries is a privately operated over-supplied system, which results in good level of service for users regarding access and waiting time, and no transfers
 – Generally, Integrated Network Systems introduce transfers to trips, which is perceived as poor level of service

• A rationalized Integrated Network System may be efficient from a supply point of view but it may deteriorate the Level of Service perceived by users
 – Number of buses and route design is crucial
Challenges and Lessons learned

• Cultural change
 – Fare collection system
 • Learn to use and trust a fare-card system instead of cash is difficult for typical lower-income user of transit in developing countries
 – Understanding maps and way-finding signs
 – Vehicles stop only at designated stops

• Institutional and Organizational Capabilities
 – Implementing an organized system requires many trained professionals – Authority, operators, designers
 – Being part of SIBRT has helped to train Metrocali’s staff
Challenges and Lessons learned

• Fare Collection System
 – Contact-less rechargeable card
 – Enough points of sales and recharge
 – Has become No. 1 deterrent for people to use the MIO system
Challenges and Lessons learned

• Economic Model
 – It was designed to cover all operational costs
 – The MIO system is not there yet
 – Operators are still injecting money every month into their operations
 – Demand has to increase to reach breaking point

• In a citywide integrated system, there will be low-performing routes, that are a social service
 – Can it be sustained without operational subsidies?
III SIBRT Conference on Best Practices

June 4-7 of 2013

Organized by
Spatial Coverage

[Image of a map showing spatial coverage with various zones and percentages]
Trunk Corridors – 5th Street
Trunk Corridor – Downtown
Trunk Corridor and Stations
Menga Transfer Station
Aguablanca Transfer Station
Garages
Aerial Cable System
Green Corridor