world development report 2010

Development and Climate Change
Contents

Forward xiii
Acknowledgments xv
Abbreviations and Data Notes xvii
Main Messages xx

Overview: Changing the Climate for Development
The case for action 4
A climate-smart world is within reach if we act now, act together, and act differently 10
Making it happen: New pressures, new instruments, and new resources 18

1 *Understanding the Links between Climate Change and Development* 37
Unmitigated climate change is incompatible with sustainable development 39
Evaluating the tradeoffs 48
The costs of delaying the global mitigation effort 55
Seizing the moment: Immediate stimulus and long-term transformations 58

Focus A: The Science of Climate Change 70

Part One

2 *Reducing Human Vulnerability: Helping People Help Themselves* 87
Adaptive management: Living with change 89
Managing physical risks: Avoiding the avoidable 90
Managing financial risks: Flexible instruments for contingencies 101
Managing social risks: Empower communities to protect themselves 105
Looking ahead to 2050: Which world? 111

Focus B: Biodiversity and Ecosystem Services in a Changing Climate 124
3 Managing Land and Water to Feed Nine Billion People and Protect Natural Systems 133
 Put in place the fundamentals for natural resource management 134
 Produce more from water and protect it better 137
 Producing more in agriculture while protecting the environment 145
 Produce more and protect better in fisheries and aquaculture 156
 Building flexible international agreements 158
 Reliable information is fundamental for good natural resource management 162
 Pricing carbon, food, and energy could be the springboard 166

4 Energizing Development without Compromising the Climate 189
 Balancing competing objectives 191
 Where the world needs to go: Transformation to a sustainable energy future 195
 Realizing the savings from energy efficiency 209
 Scaling up existing low-carbon technologies 217
 Accelerating innovation and advanced technologies 220
 Policies have to be integrated 222

Part Two

5 Integrating Development into the Global Climate Regime 233
 Building the climate regime: Transcending the tensions between climate and development 233
 Options for integrating developing-country actions into the global architecture 240
 Support for developing-country mitigation efforts 245
 Promoting international efforts to integrate adaptation into climate-smart development 246

 Focus C: Trade and Climate Change 251

6 Generating the Funding Needed for Mitigation and Adaptation 257
 The financing gap 259
 Inefficiencies in existing climate-finance instruments 263
 Increasing the scale of climate-change finance 267
 Ensuring the transparent, efficient, and equitable use of funds 276
 Matching financing needs and sources of funds 278
7 Accelerating Innovation and Technology Diffusion 287
The right tools, technologies, and institutions can put a climate-smart world well within our reach 289
International collaboration and cost sharing can leverage domestic efforts to promote innovation 293
Public programs, policies, and institutions power innovation and accelerate its diffusion 303

8 Overcoming Behavioral and Institutional Inertia 321
Harnessing individuals' behavioral change 322
Bringing the state back in 330
Thinking politically about climate policy 335
Climate-smart development starts at home 341

Bibliographical Note 349

Glossary 353

Selected Indicators 361
Table A1 Energy-related emissions and carbon intensity 362
Table A2 Land-based emissions 363
Table A3 Total primary energy supply 364
Table A4 Natural disasters 366
Table A5 Land, water, and agriculture 367
Table A6 Wealth of nations 368
Table A7 Innovation, research, and development 369
Definitions and notes 370
Symbols and aggregates 374

Selected World Development Indicators 375
Data sources and methodology 375
Classification of economies and summary measures 375
Terminology and country coverage 376
Technical notes 376
Symbols 376
Classification of economies by region and income, FY2010 377
Table 1 Key indicators of development 378
Table 2 Poverty 380
Table 3 Millennium Development Goals: eradicating poverty and improving lives 382
Table 4 Economic activity 384
CONTENTS

Table 5 Trade, aid, and finance 386
Table 6 Key indicators for other economies 388
Technical notes 390
Statistical methods 396
World Bank Atlas method 396

Index 399

Boxes

1 All developing regions are vulnerable to the impacts of climate change—for different reasons 6
2 Economic growth: Necessary, but not sufficient 7
3 The cost of “climate insurance” 8
4 Safety nets: From supporting incomes to reducing vulnerability to climate change 13
5 Promising approaches that are good for farmers and good for the environment 17
6 Ingenuity needed: Adaptation requires new tools and new knowledge 19
7 Cities reducing their carbon footprints 21
8 The role of land use, agriculture, and forestry in managing climate change 25
1.1 Empowered women improve adaptation and mitigation outcomes 43
1.2 The basics of discounting the costs and benefits of climate change mitigation 49
1.3 Positive feedbacks, tipping points, thresholds, and nonlinearities in natural and socioeconomic systems 50
1.4 Ethics and climate change 53
FA.1 The carbon cycle 71
FA.2 Ocean health: Coral reefs and ocean acidification 78
2.1 Characteristics of adaptive management 90
2.2 Planning for greener and safer cities: The case of Curitiba 93
2.3 Adapting to climate change: Alexandria, Casablanca, and Tunis 93
2.4 Fostering synergies between mitigation and adaptation 95
2.5 Preparing for heat waves 96
2.6 Beating the odds and getting ahead of impacts: Managing risk of extreme events before they become disasters 99
2.7 Satellite data and geo-information are instrumental in managing risk—and inexpensive 100
2.8 Creating jobs to reduce flood risk 101
2.9 Public-private partnerships for sharing climate risks: Mongolia livestock insurance 102
2.10 The Caribbean Catastrophe Risk Insurance Facility: Insurance against service interruption after disasters 105
2.11 Workfare in India under the Indian National Rural Employment Guarantee Act 109
2.12 Migration today 110
FB.1 What is biodiversity? What are ecosystem services? 124
FB.2 Payment for ecosystem and mitigation services 128
FB.3 Excerpts from the Declaration of Indigenous Peoples on Climate Change 128
3.1 Robust decision making: Changing how water managers do business 140
3.2 The dangers of establishing a market for water rights before the institutional structures are in place 142
3.3 Managing water resources within the margin of error: Tunisia 143
3.4 Palm Oil, emission reductions, and avoided deforestation 148
3.5 Product and market diversification: An economic and ecological alternative for marginal farmers in the tropics 152
3.6 Biotech crops could help farmers adapt to climate change 155
3.7 Biochar could sequester carbon and increase yields on a vast scale 156
3.8 Policy makers in Morocco face stark tradeoffs on cereal imports 160
3.9 Pilot projects for agricultural carbon finance in Kenya 172
4.1 The financial crisis offers an opportunity for efficient and clean energy 190
4.2 Efficient and clean energy can be good for development 192
4.3 A 450 ppm CO₂-e (2°C warmer) world requires a fundamental change in the global energy system 200
4.4 Regional energy mix for 450 ppm CO₂-e (to limit warming to 2°C) 202
4.5 Renewable energy technologies have huge potential but face constraints 205
9. High expected demand drove cost reductions in solar photovoltaics by allowing for larger-scale production.
10. The gap is large: Estimated annual incremental climate costs required for a 2°C trajectory compared with current resources.
1.1 Individuals’ emissions in high-income countries overwhelm those in developing countries.
1.2 Corn-based biofuels in the United States increase CO₂ emissions and health costs relative to gasoline.
1.3 Assessing deadweight losses from partial participation in a climate deal.
1.4 Global green stimulus spending is rising.

FA.1 Global emissions of greenhouse gases have been increasing.
FA.2 Major factors affecting the climate since the Industrial Revolution.
FA.3 Global annual average temperature and CO₂ concentration continue to climb, 1880–2007.
FA.4 Greenland’s melting ice sheet.
FA.5 Embers burning hotter: Assessment of risks and damages has increased from 2001 to 2007.
FA.6 Projected impacts of climate change by region.
FA.7 Ways to limit warming to 2°C above preindustrial levels.
2.1 The number of people affected by climate-related disasters is increasing.
2.2 Floods are increasing, even in drought-prone Africa.
2.3 Insurance is limited in the developing world.
2.4 Turning back the desert with indigenous knowledge, farmer action, and social learning.
3.1 Climate change in a typical river basin will be felt across the hydrological cycle.
3.2 Freshwater in rivers makes up a very small share of the water available on the planet—and agriculture dominates water use.
3.3 Meat is much more water intensive than major crops.
3.4 Intensive beef production is a heavy producer of greenhouse gas emissions.
3.5 Agricultural productivity will have to increase even more rapidly because of climate change.
3.6 Ecosystems have already been extensively converted for agriculture.
3.7 Computer simulation of integrated land use in Colombia.
3.8 Demand for fish from aquaculture will increase, particularly in Asia and Africa.
3.9 Remote-sensing techniques are used in the vineyards of Worcester (West Cape, South Africa) to gauge water productivity.

3.10 In Andhra Pradesh, India, farmers generate their own hydrological data, using very simple devices and tools, to regulate withdrawals from aquifers.
3.11 An ideal climate-smart agricultural landscape of the future would enable farmers to use new technologies and techniques to maximize yields and allow land managers to protect natural systems, with natural habitats integrated into agriculturally productive landscapes.
3.12 An ideal climate-smart landscape of the future would use flexible technology to buffer against climate shocks through natural infrastructure, built infrastructure, and market mechanisms.
3.13 Global cereal prices are expected to increase 50 to 100 percent by 2050.
3.14 A carbon tax applied to emissions from agriculture and land-use change would encourage protection of natural resources.

4.1 The story behind doubling emissions: improvements in energy and carbon intensity have not been enough to offset rising energy demand boosted by rising incomes.
4.2 Primary energy mix 1850–2006. From 1850 to 1950 energy consumption grew 1.5 percent a year, driven mainly by coal. From 1950 to 2006 it grew 2.7 percent a year, driven mainly by oil and natural gas.
4.3 Despite low energy consumption and emissions per capita, developing countries will dominate much of the future growth in total energy consumption and CO₂ emissions.
4.4 Greenhouse gas emissions by sector: world and high-, middle-, and low-income countries.
4.5 Car ownership increases with income, but pricing, public transport, urban planning, and urban density can contain car use.
4.6 Where the world needs to go: Energy-related CO₂ emissions per capita.
4.7 Only half the energy models find it possible to achieve the emission reductions necessary to stay close to 450 ppm CO₂e (2°C).
4.8 Estimates of global mitigation costs and carbon prices for 450 and 550 ppm CO₂e (2°C and 3°C) in 2030 from five models.
4.9 Global actions are essential to limit warming to 2°C (450 ppm) or 3°C (550 ppm). Developed countries alone could not put the world onto a 2°C or 3°C trajectory, even if they were to reduce emissions to zero by 2050.
4.10 The emissions gap between where the world is headed and where it needs to go is huge, but a portfolio of clean energy technologies can help the world stay at 450 ppm CO₂e (2°C).
4.11 The goal is to push low-carbon technologies from unproven concept to widespread deployment and to higher emission reductions.
1 Climate change will depress agricultural yields in most countries in 2050, given current agricultural practices and crop varieties 5
1.1 More than a billion people depend on water from diminishing Himalayan glaciers 38
1.2 Rich countries are also affected by anomalous climate: The 2003 heat wave killed more than 70,000 people in Europe 41
1.3 Climate change is likely to increase poverty in most of Brazil, especially its poorest regions 42
1.4 The January 2008 storm in China severely disrupted mobility, a pillar of its economic growth 45
1.5 Africa has enormous untapped hydropower potential, compared to lower potential but more exploitation of hydro resources in the United States 46
FA.1 Regional variation in global climate trends over the last 30 years 75
FA.2 Potential tipping elements in the climate system: Global distribution 79
2.1 At risk: Population and megacities concentrate in low-elevation coastal zones threatened by sea level rise and storm surges 91
7.8 E-bikes are now among the cheapest and cleanest travel mode options in China 307
7.9 Middle-income countries are attracting investments from the top five wind equipment firms, but weak intellectual property rights constrain technology transfers and R&D capacity 309
8.1 The direct actions of U.S. consumers produce up to one-third of total U.S. CO₂ emissions 322
8.2 Small local adjustments for big global benefits: Switching from SUVs to fuel-efficient passenger cars in the United States alone would nearly offset the emissions generated by providing energy to 1.6 billion more people 323
8.3 Individuals’ willingness to respond to climate change differs across countries and does not always translate into concrete actions 324
8.4 Climate change is not a priority yet 326
8.5 Concern about climate change decreases as wealth goes up 327
8.6 Effective governance goes hand in hand with good environmental performance 332
8.7 Democracies do better in climate policy outputs than policy outcomes 338

Maps
1 Climate change will depress agricultural yields in most countries in 2050, given current agricultural practices and crop varieties 5
1.1 More than a billion people depend on water from diminishing Himalayan glaciers 38
1.2 Rich countries are also affected by anomalous climate: The 2003 heat wave killed more than 70,000 people in Europe 41
1.3 Climate change is likely to increase poverty in most of Brazil, especially its poorest regions 42
1.4 The January 2008 storm in China severely disrupted mobility, a pillar of its economic growth 45
1.5 Africa has enormous untapped hydropower potential, compared to lower potential but more exploitation of hydro resources in the United States 46
FA.1 Regional variation in global climate trends over the last 30 years 75
FA.2 Potential tipping elements in the climate system: Global distribution 79
2.1 At risk: Population and megacities concentrate in low-elevation coastal zones threatened by sea level rise and storm surges 91
2.2 A complex challenge: managing urban growth and flood risk in a changing climate in South and Southeast Asia 94
2.3 Northern cities need to prepare for Mediterranean climate—now 96
2.4 Climate change accelerates the comeback of dengue in the Americas 97
2.5 Small and poor countries are financially vulnerable to extreme weather events 104
2.6 Senegalese migrants settle in flood-prone areas around urban Dakar 111
FB.1 While many of the projected ecosystem changes are in boreal or desert areas that are not biodiversity hotspots, there are still substantial areas of overlap and concern 126
FB.2 Unprotected areas at high risk of deforestation and with high carbon stocks should be priority areas to benefit from a REDD mechanism 129
3.1 Water availability is projected to change dramatically by the middle of the 21st century in many parts of the world 137
3.2 The world will experience both longer dry spells and more intense rainfall events 138
3.3 Climate change will depress agricultural yields in most countries by 2050 given current agricultural practices and crop varieties 145
3.4 Intensive agriculture in the developed world has contributed to the proliferation of dead zones 150
3.5 World grain trade depends on exports from a few countries 161
3.6 Developed countries have more data collection points and longer time series of water monitoring data 163
7.1 Advances in wind mapping open up new opportunities 288

Tables

1 Incremental mitigation costs and associated financing requirements for a 2°C trajectory: What will be needed in developing countries by 2030? 9
2 In the long term, what will it cost? Present value of mitigation costs to 2100 9
FA.1 Potential tipping elements in the climate system: Triggers, time-scale, and impacts 80
FB.1 Assessment of the current trend in the global state of major services provided by ecosystems 125
4.1 What it would take to achieve the 450 ppm CO₂e concentration needed to keep warming close to 2°C—an illustrative scenario 198
4.2 Investment needs to limit warming to 2°C (450 ppm CO₂e) in 2030 199
4.3 Different country circumstances require tailored approaches 204
4.4 Policy instruments tailored to the maturity of technologies 207
4.5 Policy interventions for energy efficiency, renewable energy, and transport 214
6.1 Existing instruments of climate finance 258
6.2 Estimated annual climate funding needed in developing countries 260
6.3 Potential regional CDM delivery and carbon revenues (by 2012) 262
6.4 New bilateral and multilateral climate funds 263
6.5 The tax incidence of an adaptation levy on the Clean Development Mechanism (2020) 267
6.6 Potential sources of mitigation and adaptation finance 271
6.7 National and multilateral initiatives to reduce deforestation and degradation 273
7.1 International technology-oriented agreements specific to climate change 294
7.2 Key national policy priorities for innovation 303
Foreword

Climate change is one of the most complex challenges of our young century. No country is immune. No country alone can take on the interconnected challenges posed by climate change, including controversial political decisions, daunting technological change, and far-reaching global consequences.

As the planet warms, rainfall patterns shift and extreme events such as droughts, floods, and forest fires become more frequent. Millions in densely populated coastal areas and in island nations will lose their homes as the sea level rises. Poor people in Africa, Asia, and elsewhere face prospects of tragic crop failures; reduced agricultural productivity; and increased hunger, malnutrition, and disease.

As a multilateral institution whose mission is inclusive and sustainable development, the World Bank Group has a responsibility to try to explain some of those interconnections across disciplines—development economics, science, energy, ecology, technology, finance, and effective international regimes and governance. With 186 members, the World Bank Group faces the challenge, every day, of building cooperation among vastly different states, the private sector, and civil society to achieve common goods. This 32nd World Development Report seeks to apply that experience, combined with research, to advance knowledge about Development and Climate Change.

Developing countries will bear the brunt of the effects of climate change, even as they strive to overcome poverty and advance economic growth. For these countries, climate change threatens to deepen vulnerabilities, erode hard-won gains, and seriously undermine prospects for development. It becomes even harder to attain the Millennium Development Goals—and ensure a safe and sustainable future beyond 2015. At the same time, many developing countries fear limits on their critical call to develop energy or new rules that might stifle their many needs—from infrastructure to entrepreneurism.

Tackling the immense and multidimensional challenge of climate change demands extraordinary ingenuity and cooperation. A “climate-smart” world is possible in our time—yet, as this Report argues, effecting such a transformation requires us to act now, act together, and act differently.

We must act now, because what we do today determines both the climate of tomorrow and the choices that shape our future. Today, we are emitting greenhouse gases that trap heat in the atmosphere for decades or even centuries. We are building power plants, reservoirs, houses, transport systems, and cities that are likely to last 50 years or more. The innovative technologies and crop varieties that we pilot today can shape energy and food sources to meet the needs of 3 billion more people by 2050.

We must act together, because climate change is a crisis of the commons. Climate change cannot be solved without countries cooperating on a global scale to improve energy efficiencies, develop and deploy clean technologies, and expand natural “sinks” to grow green by absorbing gases. We need to protect human life and ecological resources. We must act together in a differentiated and equitable way. Developed countries have produced most of the emissions of the past and have high per capita emissions. These countries should lead the way by significantly reducing their carbon footprints and stimulating research into
green alternatives. Yet most of the world’s future emissions will be generated in the developing world. These countries will need adequate funds and technology transfer so they can pursue lower carbon paths—without jeopardizing their development prospects. And they need assistance to adapt to inevitable changes in climate.

We must act differently, because we cannot plan for the future based on the climate of the past. Tomorrow’s climate needs will require us to build infrastructure that can withstand new conditions and support greater numbers of people; use limited land and water resources to supply sufficient food and biomass for fuel while preserving ecosystems; and reconfigure the world’s energy systems. This will require adaptation measures that are based on new information about changing patterns of temperature, precipitation, and species. Changes of this magnitude will require substantial additional finance for adaptation and mitigation, and for strategically intensified research to scale up promising approaches and explore bold new ideas.

We need a new momentum. It is crucial that countries reach a climate agreement in December in Copenhagen that integrates development needs with climate actions.

The World Bank Group has developed several financing initiatives to help countries cope with climate change, as outlined in our Strategic Framework for Development and Climate Change. These include our carbon funds and facilities, which continue to grow as financing for energy efficiency and new renewable energy increases substantially. We are trying to develop practical experience about how developing countries can benefit from and support a climate change regime—ranging from workable mechanisms to provide incentives for avoided deforestation, to lower carbon growth models and initiatives that combine adaptation and mitigation. In these ways, we can support the UNFCCC process and the countries devising new international incentives and disincentives.

Much more is needed. Looking forward, the Bank Group is reshaping our energy and environment strategies for the future, and helping countries to strengthen their risk management practices and expand their safety nets to cope with risks that cannot be fully mitigated.

The 2010 World Development Report calls for action on climate issues: If we act now, act together, and act differently, there are real opportunities to shape our climate future for an inclusive and sustainable globalization.

Robert B. Zoellick
President
The World Bank Group
Acknowledgments

This Report has been prepared by a core team led by Rosina Bierbaum and Marianne Fay and comprising Julia Bucknall, Samuel Fankhauser, Ricardo Fuentes-Nieva, Kirk Hamilton, Andreas Kopp, Andrea Liverani, Alexander Lotsch, Ian Noble, Jean-Louis Racine, Mark Rosegrant, Xiaodong Wang, Xueman Wang, and Michael Ian Westphal. Major contributions were made by Arun Agrawal, Philippe Ambrosi, Elliot Diringer, Calestous Juma, Jean-Charles Hourcade, Kseniya Lvovsky, Muthukumara Mani, Alan Miller, and Michael Toman. Helpful advice and data were provided by Leon Clarke, Jens Dinkel, Jae Edmonds, Per-Anders Enkvist, Brigitte Knopf, and Volker Krey. The team was assisted by Rachel Block, Doina Cebotari, Nicola Cenacchi, Sandy Chang, Nate Engle, Hilary Gopnik, and Hrishikesh Patel. Additional contributions were made by Lidvard Gronnevet and Jon Strand.

Bruce Ross-Larson was the principal editor. The World Bank’s Map Design Unit created the maps under the direction of Jeff Lecksell. The Office of the Publisher provided editorial, design, composition, and printing services under the supervision of Mary Fisk and Andres Meneses; Stephen McGroarty served as acquisitions editor.

The World Development Report 2010 was co-sponsored by Development Economics (DEC) and the Sustainable Development Network (SDN). The work was conducted under the general guidance of Justin Yifu Lin in DEC and Katherine Sierra in SDN. Warren Evans and Alan H. Gelb also provided valuable guidance. A Panel of Advisers comprised of Neil Adger, Zhou Dadi, Rashid Hassan, Geoffrey Heal, John Holdren (until December 2008), Jean-Charles Hourcade, Saleemul Huq, Calestous Juma, Nebojša Nakicenović, Carlos Nobre, John Schellnhuber, Robert Watson, and John Weyant provided extensive and excellent advice at all stages of the Report.

World Bank President Robert B. Zoellick provided comments and guidance.

Many others inside and outside the World Bank contributed with comments and inputs. The Development Data Group contributed to the data appendix and was responsible for the Selected World Development Indicators.

The team benefited greatly from a wide range of consultations. Meetings and regional workshops were held locally or through videoconferencing (using the World Bank’s Global Development Learning Network) in: Argentina, Bangladesh, Belgium, Benin, Botswana, Burkina Faso, China, Costa Rica, Côte d’Ivoire, Denmark, Dominican Republic, Ethiopia, Finland, France, Germany, Ghana, India, Indonesia, Kenya, Kuwait, Mexico, Mozambique, the Netherlands, Nicaragua, Norway, Peru, the Philippines, Poland, Senegal, South Africa, Sweden, Tanzania, Thailand, Togo, Tunisia, Uganda, the United Arab Emirates, and the United Kingdom. The team wishes to thank participants in these workshops and videoconferences, which included academics, policy researchers, government officials, and staff of nongovernmental, civil society, and private sector organizations.

Finally, the team would like to acknowledge the generous support of the Government of Norway, the UK Department for International Development, the Government of Denmark, the Government of Germany through Deutsche Gesellschaft für technische Zusammenarbeit, the Swedish Government through Biodiversity Centre/Swedish International Biodiversity Programme (SwedBio), the Trust Fund for Environmentally & Socially Sustainable Development
(TFESSD), the multi-donor programmatic trust fund, and the Knowledge for Change Program (KCP).

Rebecca Sugui served as senior executive assistant to the team—her 17th year with the *WDR*—Sonia Joseph and Jason Victor as program assistants, and Bertha Medina as team assistant. Evangeline Santo Domingo served as resource management assistant.
Abbreviations and Data Notes

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAU</td>
<td>assigned amount unit</td>
</tr>
<tr>
<td>ARPP</td>
<td>Annual Report on Portfolio Performance</td>
</tr>
<tr>
<td>BRIICS</td>
<td>Brazil, the Russian Federation, India, Indonesia, China, and South Africa</td>
</tr>
<tr>
<td>Bt</td>
<td>Bacillus thuringiensis</td>
</tr>
<tr>
<td>CCS</td>
<td>carbon capture and storage</td>
</tr>
<tr>
<td>CDM</td>
<td>Clean Development Mechanism</td>
</tr>
<tr>
<td>CER</td>
<td>certified emission reduction</td>
</tr>
<tr>
<td>CGIAR</td>
<td>Consultative Group on International Agricultural Research</td>
</tr>
<tr>
<td>CIPAV</td>
<td>Centro para Investigación en Sistemas Sostenibles de Producción Agropecuaria</td>
</tr>
<tr>
<td>CH₄</td>
<td>methane</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CO₂ₑ</td>
<td>carbon dioxide equivalent</td>
</tr>
<tr>
<td>CPIA</td>
<td>Country Policy and Institutional Assessment</td>
</tr>
<tr>
<td>CTF</td>
<td>Clean Technology Fund</td>
</tr>
<tr>
<td>EE</td>
<td>energy efficiency</td>
</tr>
<tr>
<td>EIT</td>
<td>economies in transition</td>
</tr>
<tr>
<td>ENSO</td>
<td>El Niño–Southern Oscillation</td>
</tr>
<tr>
<td>ESCO</td>
<td>energy service company</td>
</tr>
<tr>
<td>ETF–IW</td>
<td>Environmental Transformation Fund–International Window</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FCPF</td>
<td>Forest Carbon Partnership Facility</td>
</tr>
<tr>
<td>FDI</td>
<td>foreign direct investment</td>
</tr>
<tr>
<td>FIP</td>
<td>Forest Investment Program</td>
</tr>
<tr>
<td>GCCA</td>
<td>Global Climate Change Alliance</td>
</tr>
<tr>
<td>GCS</td>
<td>global climate services enterprise</td>
</tr>
<tr>
<td>GDP</td>
<td>gross domestic product</td>
</tr>
<tr>
<td>GEO</td>
<td>Group on Earth Observation</td>
</tr>
<tr>
<td>GEOSS</td>
<td>Global Earth Observation System of Systems</td>
</tr>
<tr>
<td>GEEREF</td>
<td>Global Energy Efficiency and Renewable Energy Fund</td>
</tr>
<tr>
<td>GEF</td>
<td>Global Environment Facility</td>
</tr>
<tr>
<td>GFDRR</td>
<td>Global Facility for Disaster Reduction and Recovery</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gas</td>
</tr>
<tr>
<td>GM</td>
<td>genetically modified</td>
</tr>
<tr>
<td>Gr</td>
<td>gigaton</td>
</tr>
<tr>
<td>GWP</td>
<td>global warming potential</td>
</tr>
<tr>
<td>IAASTD</td>
<td>International Assessment of Agricultural Science and Technology for Development</td>
</tr>
<tr>
<td>IATAL</td>
<td>international air travel adaptation levy</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>IDA</td>
<td>International Development Association</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency</td>
</tr>
<tr>
<td>IFC</td>
<td>International Finance Corporation</td>
</tr>
<tr>
<td>IFCI</td>
<td>International Forest Carbon Initiative</td>
</tr>
<tr>
<td>IIASA</td>
<td>International Institute for Applied Systems Analysis</td>
</tr>
<tr>
<td>IMERS</td>
<td>International Maritime Emission Reduction Scheme</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>IPR</td>
<td>intellectual property rights</td>
</tr>
<tr>
<td>kWh</td>
<td>kilowatt-hour</td>
</tr>
<tr>
<td>JI</td>
<td>Joint Implementation</td>
</tr>
<tr>
<td>LDCF</td>
<td>Least Developed Country Fund</td>
</tr>
<tr>
<td>LECZ</td>
<td>low-elevation coastal zones</td>
</tr>
<tr>
<td>LPG</td>
<td>liquefied petroleum gas</td>
</tr>
<tr>
<td>MEA</td>
<td>multilateral environmental agreement</td>
</tr>
<tr>
<td>MRGRA</td>
<td>Midwestern Regional GHG Reduction Accord</td>
</tr>
<tr>
<td>MRV</td>
<td>measurable, reportable, and verifiable</td>
</tr>
<tr>
<td>NAPA</td>
<td>National Adaptation Program of Action</td>
</tr>
<tr>
<td>N_{2}O</td>
<td>nitrous oxide</td>
</tr>
<tr>
<td>NGO</td>
<td>nongovernmental organization</td>
</tr>
<tr>
<td>O_{3}</td>
<td>ozone</td>
</tr>
<tr>
<td>O&M</td>
<td>operation and maintenance</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>PaCIS</td>
<td>Pacific Climate Information System</td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>PPCR</td>
<td>Pilot Program for Climate Resistance</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PPP</td>
<td>purchasing power parity</td>
</tr>
<tr>
<td>R&D</td>
<td>research and development</td>
</tr>
<tr>
<td>RD&D</td>
<td>research, development, and deployment</td>
</tr>
<tr>
<td>RDD&D</td>
<td>research, development, demonstration, and deployment</td>
</tr>
<tr>
<td>REDD</td>
<td>reduced emissions from deforestation and forest degradation</td>
</tr>
<tr>
<td>RGGI</td>
<td>Regional Greenhouse Gas Initiative</td>
</tr>
<tr>
<td>SCCF</td>
<td>Strategic Climate Change Fund</td>
</tr>
<tr>
<td>SDII</td>
<td>simple daily intensity index</td>
</tr>
<tr>
<td>SD-PAMs</td>
<td>sustainable development policies and measures</td>
</tr>
<tr>
<td>SO_{2}</td>
<td>sulfur dioxide</td>
</tr>
<tr>
<td>SUV</td>
<td>sports utility vehicle</td>
</tr>
<tr>
<td>toe</td>
<td>tons of oil equivalent</td>
</tr>
<tr>
<td>TRIPS</td>
<td>Trade-Related Aspects of Intellectual Property Rights</td>
</tr>
<tr>
<td>Tt</td>
<td>trillion tons</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>UN-REDD</td>
<td>United Nations Collaborative Program on Reduced Emissions from Deforestation and forest Degradation</td>
</tr>
<tr>
<td>WCI</td>
<td>Western Climate Initiative</td>
</tr>
<tr>
<td>WGI</td>
<td>World Governance Indicator</td>
</tr>
<tr>
<td>WMO</td>
<td>World Meteorological Organization</td>
</tr>
<tr>
<td>WTO</td>
<td>World Trade Organization</td>
</tr>
</tbody>
</table>
Data notes

The countries included in regional and income groupings in this Report are listed in the Classification of Economies table at the end of the Selected World Development Indicators. Income classifications are based on gross national product (GNP) per capita; thresholds for income classifications in this edition may be found in the Introduction to Selected World Development Indicators. Figures, maps, and tables (including selected indicators) showing income groupings are based on the World Bank’s income classification in 2009. The data shown in the Selected World Development Indicators are based on the classification in 2010. Group averages reported in the figures and tables are unweighted averages of the countries in the group, unless noted to the contrary.

The use of the word countries to refer to economies implies no judgment by the World Bank about the legal or other status of a territory. The term developing countries includes low- and middle-income economies and thus may include economies in transition from central planning, as a matter of convenience. The terms industrialized countries or developed countries may be used as a matter of convenience to denote high-income economies.

Dollar figures are current U.S. dollars, unless otherwise specified. Billion means 1,000 million; trillion means 1,000 billion.
Main Messages of the World Development Report 2010

Poverty reduction and sustainable development remain core global priorities. A quarter of the population of developing countries still lives on less than $1.25 a day. One billion people lack clean drinking water; 1.6 billion, electricity; and 3 billion, adequate sanitation. A quarter of all developing-country children are malnourished. Addressing these needs must remain the priorities both of developing countries and of development aid—recognizing that development will get harder, not easier, with climate change.

Yet climate change must urgently be addressed. Climate change threatens all countries, with developing countries the most vulnerable. Estimates are that they would bear some 75 to 80 percent of the costs of damages caused by the changing climate. Even 2°C warming above preindustrial temperatures—the minimum the world is likely to experience—could result in permanent reductions in GDP of 4 to 5 percent for Africa and South Asia. Most developing countries lack sufficient financial and technical capacities to manage increasing climate risk. They also depend more directly on climate-sensitive natural resources for income and well-being. And most are in tropical and subtropical regions already subject to highly variable climate.

Economic growth alone is unlikely to be fast or equitable enough to counter threats from climate change, particularly if it remains carbon intensive and accelerates global warming. So climate policy cannot be framed as a choice between growth and climate change. In fact, climate-smart policies are those that enhance development, reduce vulnerability, and finance the transition to low-carbon growth paths.

A climate-smart world is within our reach if we act now, act together, and act differently than we have in the past:

- **Acting now** is essential, or else options disappear and costs increase as the world commits itself to high-carbon pathways and largely irreversible warming trajectories. Climate change is already compromising efforts to improve standards of living and to achieve the Millennium Development Goals. Staying close to 2°C above preindustrial levels—likely the best that can be done—requires a veritable energy revolution with the immediate deployment of energy efficiency and available low-carbon technologies, accompanied by massive investments in the next generation of technologies without which low-carbon growth cannot be achieved. Immediate actions are also needed to cope with the changing climate and to minimize the costs to people, infrastructure and ecosystems today as well as to prepare for the greater changes in store.
• **Acting together** is key to keeping the costs down and effectively tackling both adaptation and mitigation. It has to start with high-income countries taking aggressive action to reduce their own emissions. That would free some “pollution space” for developing countries, but more importantly, it would stimulate innovation and the demand for new technologies so they can be rapidly scaled up. It would also help create a sufficiently large and stable carbon market. Both these effects are critical to enable developing countries to move to a lower carbon trajectory while rapidly gaining access to the energy services needed for development, although they will need to be supplemented with financial support. But acting together is also critical to advance development in a harsher environment—increasing climate risks will exceed communities’ capacity to adapt. National and international support will be essential to protect the most vulnerable through social assistance programs, to develop international risk-sharing arrangements, and to promote the exchange of knowledge, technology, and information.

• **Acting differently** is required to enable a sustainable future in a changing world. In the next few decades, the world’s energy systems must be transformed so that global emissions drop 50 to 80 percent. Infrastructure must be built to withstand new extremes. To feed 3 billion more people without further threatening already stressed ecosystems, agricultural productivity and efficiency of water use must improve. Only long-term, large-scale integrated management and flexible planning can satisfy increased demands on natural resources for food, bioenergy, hydropower, and ecosystem services while conserving biodiversity and maintaining carbon stocks in land and forests. Robust economic and social strategies will be those that take into account increased uncertainty and that enhance adaptation to a variety of climate futures—not just “optimally” cope with the climate of the past. Effective policy will entail jointly evaluating development, adaptation, and mitigation actions, all of which draw on the same finite resources (human, financial, and natural).

An equitable and effective global climate deal is needed. Such a deal would recognize the varying needs and constraints of developing countries, assist them with the finance and technology to meet the increased challenges to development, ensure they are not locked into a permanently low share of the global commons, and establish mechanisms that decouple where mitigation happens from who pays for it. Most emissions growth will occur in developing nations, whose current carbon footprint is disproportionately low and whose economies must grow rapidly to reduce poverty. High-income countries must provide financial and technical assistance for both adaptation and low-carbon growth in developing countries. Current financing for adaptation and mitigation is less than 5 percent of what may be needed annually by 2030, but the shortfalls can be met through innovative financing mechanisms.

Success hinges on changing behavior and shifting public opinion. Individuals, as citizens and consumers, will determine the planet’s future. Although an increasing number of people know about climate change and believe action is needed, too few make it a priority, and too many fail to act when they have the opportunity. So the greatest challenge lies with changing behaviors and institutions, particularly in high-income countries. Public policy changes—local, regional, national, and international—are necessary to make private and civic action easier and more attractive.